期刊文献+

共享免疫微粒群算法 被引量:2

Immune Particle Swarm Optimization Based on Sharing Mechanism
下载PDF
导出
摘要 将共享机制引入微粒群算法,把群体的粒子适应度更新为共享适应度,对共享适应度高的粒子进行处罚,保留低适应值的粒子为记忆粒子,当全局最好值连续进化若干代无变化时,用记忆粒子和克隆选择来更新粒子。这样既增加了群体的多样性,同时又保存了群体中最好的粒子,从而有效克服了由于微粒群算法多样性差而造成的易陷于局部最优和对多峰值函数搜索效果不佳的缺点,仿真实验验证了该算法的有效性。 Sharing mechanism was introduced into the particle swarm optimization. Particle's fitness value of population was updated for sharing fitness value. Particles with higher share fitness value were punished and particles with smaller sharing fitness value were remained as memory particles. Particles were updated with memory particles and clone choice when global best did not changed in some continuous evolutions. In this way, diversity of population is increased. At the same time the particle that has the best fitness value is saved. The modified algorithm can avoid the local optimization and has better search performance for multi-peak functions. The experimental results show the modified algorithm has better convergence performance than original particle swarm optimization algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第16期4278-4280,4285,共4页 Journal of System Simulation
基金 国家自然科学基金资助(60674104)
关键词 微粒群算法 免疫机制 克隆选择 免疫记忆 共享机制 particle swarm optimization mechanism of immune system clone choice immune memory sharing mechanism
  • 相关文献

参考文献11

  • 1Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [C]// Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995. 1995: 39-43.
  • 2Kennedy J, Eberhart R C. Particle swarm optimization. [C]// Proc. IEEE Int'l Conf. on Neural Networks. Piscataway, NJ: IEEE Press, 1995, IV: 1942-1948.
  • 3AI-Kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm [C]// Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA. 2002: Vol.1: 489-494.
  • 4F van den Bergh, A P Engelbrecht. Training Product Unit Networks Using Cooperative Particle Swarm Optimizers. [C]//Proc of the third Genetic and Evolutionary Computation Conference (GECCO), San Francisco, USA, 2001. 2001: 126-131.
  • 5Xie X F, Zhang W J, Yang Z L. Adaptive Particle Swarm Optimization on Individual Level. [C]//2002 6th International Conference on Signal Processing. Beijing, China, 2002, 2: 1215-1218.
  • 6Xie X F, Zhang W J, Yang Z L. A dissipative particle swarm optimization. [C]// Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA, 2002, 2: 1456-1461.
  • 7Xie X F, Zhang W J, Yang Z L. Hybrid Particle Swarm Optimizer with Mass Extinction. [C]// IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions.2002,2:1170-1173.
  • 8Morten L, Thomas K R, Thiemo K. Hybrid Particle Swarm Optimizer with Breeding and Subpopulations. [C]// Proceedings of the Genetic and Evolutionary Computation Conference, 2001.
  • 9曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 10J Kennedy, R Eberhart, Yuhui Shi. Swarm Intelligence [M]. San Francisco: Morgan Kaufinann, 2001: 287-299.

二级参考文献9

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975
  • 8李宏,唐焕文,郭崇慧.一类进化策略的收敛性分析[J].运筹学学报,1999,3(4):79-83. 被引量:20
  • 9郭崇慧,唐焕文.演化策略的全局收敛性[J].计算数学,2001,23(1):105-110. 被引量:36

共引文献284

同被引文献15

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部