期刊文献+

求解弹性接触问题余能泛函的Lemke法 被引量:1

Lemke Algorithm for Solving Complementary Energy Functional of Elastic Contact Problems
下载PDF
导出
摘要 本文研究了一般弹性接触问题有限元余能泛函的构造及其求解问题.将一般弹性接触问题数学模型归于二次规划,通过用Lemke法找线性互补问题基本解的方法来获得二次规划的Kuhn-Tucker点,并证明了二者的等价性.本文用Lemke法对不少算例进行了求解,发现此法具有收敛快、精度高等优点,尤其对正定性差的问题也能较好求解,不失为一种求解弹性接触问题的可行方法. This paper studies the construction of complementary energy functional for general elastic contact problems and its solving. General elastic contact problems are resulted in quadratic programming . With Lemke algorithm, we find Complementary Basic Feasible Solution (CBFS) as the Kuhn-Tucker point for quadratic programming and certificate their equivalence. Several applied problems are solved with Lemke algorithm in the paper. The result shows that the algorithm has rapid convergence and high precision. Specially it can solve well the problems with worse positive definiteness . To elastic contact problems this is a feasible algorithm.
作者 李青 李卫
出处 《湖南大学学报》 EI CAS CSCD 1990年第4期135-142,共8页
关键词 接触 弹性接触 Lemke法 有限元法 complementary energy method finite elements quadratic programming/linear complementary problem Lemke algorithm
  • 相关文献

同被引文献13

  • 1舒小平.摩擦对梁的接触问题的影响[J].力学与实践,1994,16(6):33-35. 被引量:2
  • 2张洪武.规划法在接触分析中的无意义射线解[J].大连理工大学学报,1995,35(4):468-472. 被引量:1
  • 3李岳生,黄友谦.数值逼近[M].北京:人民教育出版社,1987.
  • 4TIMOSHENKO S P. Strength of materials, part I, advanced theory and problems[M]. 3rded. Canada: D Van Nostrand Company Ltd,1957 :268-- 271.
  • 5罗开彬.考虑剪切变形影响时叠层梁层间接触压力分析.力学与实践,1987,9(2):25-29.
  • 6KEER L M ,SILVA M A G. Bending of a cantilever brought gradually into cantact with a cyiindrical supporting surface[J]. Int J Mech Sci,1970(12): 751--758.
  • 7KIKUCHI N, ODEN J T. Contact problems in elasticity., a study of variational inequalities and finite element methods [M]. Philadelphia : SIAM, 1988:127-- 145.
  • 8陈宝林.最优化理论与方法[M].北京:清华大学出版社,2005.
  • 9黄志强.有限长叠梁弯曲的接触力解[J].武汉化工学院学报,1997,19(1):75-77. 被引量:2
  • 10李丽娟,李晓阳,罗建辉.横向正应变对梁接触问题的影响[J].湖南大学学报(自然科学版),1998,25(2):7-11. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部