期刊文献+

交会对接航天器推力分配算法研究 被引量:15

Research on a Thrust Allocation Algorithm of Spacecraft in RVD
下载PDF
导出
摘要 如何将期望控制指令动态地分配到冗余配置的推力器系统成为航天器控制算法设计的关键问题之一。针对推力器冗余配置的航天器控制分配问题进行初步探索性研究,提出了一种基于控制分配技术的推力动态分配新方法。首先建立推力分配问题的数学模型,并运用伪逆与线性规划相结合的二次分步优化方法对问题进行求解,且将其应用于以推力器为执行机构的交会航天器轨道与姿态一体化控制问题研究。最后对算法进行开环仿真验证,并采用微小卫星物理仿真平台(MicroSim平台)的推力器配置方案进行交会对接最后接近段的六自由度闭环数学仿真验证。仿真结果表明:所提算法在燃料消耗上优于传统的轨道与姿态单独控制模式。 How to make the expected control directives assigned dynamically to the redundant thruster configuration system is one of the key issues during the desigmnent of spacecraft control algorithm. The paper tended to make a primary exploratory research work about this problem and presented a new method of dynamic thrust allocation algorithm based on the technology of control allocation. Mathematical model about integrated thrust allocation problem was established at first, and then we took two steps of optimization method to solve the problem, the first pseudo-inverse and the second linear programming, which was applied to solve the problem of spacecraft' s integrated orbit and attitude control using thrusters as actuators in Rendezvous and Docking (RVD). At last open-loop simulation was performed to testify the validity of the algorithm, and 6-DOF closed-loop simulation about the last approximation of RVD was performed based on the thruster configuration of Microsim. Simulation results indicate that less fuel is consumed using the algorithm mentioned above compared with traditional control mode.
出处 《宇航学报》 EI CAS CSCD 北大核心 2008年第4期1120-1125,共6页 Journal of Astronautics
基金 国家自然科学基金(60704020) 长江学者和创新团队发展计划项目(IRT0520) 教育部博士点基金(20070213068)
关键词 航天器 推力器 控制分配 线性规划 一体化控制 Spacecraft Thruster Control allocation Linear programming Integrated control
  • 相关文献

参考文献9

  • 1Martel F. Optimal simultaneous 6 axis command of a space vehicle with a precomputed thruster selection catalogue table [ C ]// AAS/AIAA Astrodynamics Specialist Conference. Montana USA : AAS 03 - 587.
  • 2Petersen J A M, Bodson M. Constrained quadratic programming techniques for control allocation[J]. IEEE Transactions on Control Systems Technology, 2006, 14(1) : 91 - 98.
  • 3Harkegard O. Backstepping and Control Allocation with Applications to Flight Control[M]. Ph. D. Dissertation. Linkoping University, 2003.
  • 4Jin J, Park B, Park Y, Tahk M J. Attitude control of a satellite with redundant thrusters[J]. Aerospace Science and Technology, 2006, 10 (7) : 644 - 651.
  • 5Servidia P A, Pena R S. Spacecraft thruster control allocation probtems [J]. IEEE Transactions on Automatic Control, 2005, 50(2) : 245 - 249.
  • 6Pena R S, Alonso R, Anigstein P. Robust solution to the attitude/force control problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 784-792.
  • 7Bennis R J M, Chu Q P, Mulder J A, Ortega G. Adaptive fuzzy control for rendezvous and docking by reinforcement learning[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001, A01 - 37180.
  • 8Servidia P A, Pena R S. Thruster design for position/attitude control of spacecraft [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4) : 1172 - 1180.
  • 9林来兴.空间交会对接技术[M].北京:国防工业出版社,1995..

共引文献50

同被引文献143

引证文献15

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部