摘要
和传统基于各种简化模型的研究不同,直接基于非线性微分–代数(differential-algebraic equation,DAE)子系统模型(即元件结构化模型)研究元件的非线性分散控制问题。首先分析元件结构化模型的特殊性,包括其指数1性质和关联可测性质。接着利用此特殊性,将非线性DAE子系统的控制问题转化为一类关联可测的非线性常微分方程(ordinary differential equation,ODE)子系统的控制问题。这样,传统的、适合于非线性ODE系统的控制方法就可在进行适当改进和拓展后用于元件非线性DAE子系统的控制器设计。此外,还讨论具体设计时需关注的若干问题,包括接口变量的选择与分解,输出方程与被控量的选择及反馈变量的选择。最后,归纳了设计控制器的具体步骤。
A nonlinear differential-algebraic equation (DAE) sub-system model of component, or component structural model, is used to analyze the component control problem. The particularities of component structural model are analyzed, including its characteristics of Index 1 and interconnection measurability. By utilizing its particularities, above DAE control problem is converted to the problem of a kind of nonlinear ordinary differential equation (ODE) sub-system with measurable interconnections. Thus, traditional nonlinear control methods which are suitable for nonlinear ODE systems could be developed and expanded to be suitable for designing controllers of nonlinear DAE sub-systems. Besides, some other problems which need to be noted when designing controllers are discussed, e.g. the selection and decomposition of interface variables, the selection of output equations and controlled variables, and the selection of feedback variables. The detailed designing procedure of component decentralized controller is given.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2008年第22期15-22,共8页
Proceedings of the CSEE
基金
国家自然科学基金项目(50507002
60174004
59925718)~~
关键词
电力系统
非线性控制
元件
微分-代数子系统
power system
nonlinear control
component
differential-algebraic sub-system