期刊文献+

神经网络滑模控制在并联机器人中的应用 被引量:2

The Application of Variable Structure Based on Neural Network in the Control of Parallet Robot
下载PDF
导出
摘要 首先用滑模控制策略对被控对象进行控制仿真,在分析结果后,结合神经网络滑模控制方法,充分利用神经网络滑模控制的学习能力强,自适应辨识能力强,可以无穷逼近任意函数的优点。仿真结果表明,神经网络滑模控制方法的跟踪效果好,系统误差小,可以满足机器人控制的要求,能够解决机器人的轨迹跟踪问题,仿真实验证实了该控制策略的正确性和有效性。 Firstly,by the use of the sliding control strategy to simulate the object, after analysing the results, combining the neural network sliding control method, making full use of the learning ability of the neural network sliding control and the ability of adaptive identification ,and it also can approximate any function infinite advantages. The simulation results showed that the neural network control method of tracking sliding took good effect, the system error was small, satisfing the requirements of robot control, solving the problem of robot tracking. The simulation experiments confirmed the correctness of the control strategy and effectiveness.
机构地区 江苏大学
出处 《微特电机》 北大核心 2008年第8期32-35,共4页 Small & Special Electrical Machines
基金 国家自然科学基金资助项目(50375067) 江苏省教育厅资助项目(03KJD510072)
关键词 并联机器人 滑模控制 神经网络 仿真 控制策略 parallel robot sliding control neural network simulation control strategy
  • 相关文献

参考文献5

  • 1Gao W B, Wang Y F, Homaifa A. Discrete -time variable structure control systems[ J]. IEEE Transtractions on Industrial Electonics, 1945,42(2) :117 - 122.
  • 2Furuta K. Sliding mode control of a discrete system[ J]. Systrem & Control Letters, 1940,14 ( 2 ) : 145 - 152.
  • 3Lin F J, Wai R J. Sliding - mode - controlled slider - crank mechanism with fuzzyneuralnetwork[ J]. IEEE Trans: on Industrial Electonics, 1945,42(2) :117 - 122.
  • 4固高科技.GPM系列并联机构使用说明[M].深圳固高科技有限公司,2003.
  • 5尹鹏军,高国琴,段大鹏.基于PMBLDC驱动并联机器人的模糊滑模控制研究[J].组合机床与自动化加工技术,2005(2):45-47. 被引量:3

二级参考文献4

  • 1Ghuis H, et al. A Robust Adaptive Robot Controller [ J]. IEEE.Trans on Robotics and Automation, 1993 (6).
  • 2A Discrete Time Variable Structure Controller for a Brushless dc Motor Drive [J]. IEEE Rrans on Industrial Electronic 2001 (2).
  • 3A simple Robust Sliding- mode Fuzzy - logic Controller of The Diagonal Type [J]. Journal of intelligent and Robotic Systems, 1999(26) :353 - 388.
  • 4马履中,尹小琴,杨廷力.新型三平移并联机器人机构动力分析与动态仿真[J].农业机械学报,2002,33(2):80-83. 被引量:39

共引文献3

同被引文献23

  • 1许春山,孙兴进,曹广益.一种新的机器人轨迹跟踪滑模变结构控制[J].计算机仿真,2004,21(7):115-118. 被引量:18
  • 2张铁,谢存禧.机器人学[M].1版.广州:华南理工大学出版社,2001:10-12.
  • 3Kuo T C, Huang Y J. Neural network global sliding mode PID control for robot manipulators[ C]//Proceedings of the World Congress on Engi- neering. 2007 : 470 - 474.
  • 4Ravari A R N, Taghirad H D. A novel hybrid fuzzy-PID controller for tracking control of robot manipulators[ C ]// Proceedings of the 2008 IEEE international Conference on Robotics and Biomimetics. Piscataway, NJ, USA : IEEE, 2009 : 1625 - 1630.
  • 5Lee M J. An adaptive tracking control for robotic manipulators based on RBFN [ J ]. International Journal of Fuzzy Logic and Intelligent Systems, 2007, 7(2): 96-101.
  • 6Ha Q P, Nguyen Q H, Ryeetal D C. Fuzzy sliding mode controllers with applications[ J]. IEEE Transactions on Industrial Electronics, 2001, 48(1) : 38 -46.
  • 7Hsu Y C, Chen G, Li H X. A fuzzy adaptive variable structure controller with applications to robot manipulators[ J]. IEEE Transactions on Sys- tems, Man and Cybernetics: Part B, 2001, 31 (3) : 331 -340.
  • 8金聪颖,李进,李研.机器人轨迹跟踪的模糊控制方法[J].电子科学,2006,14(2):19-21.
  • 9Tsai C H, Chung H Y, Yu F M. Neuro-sliding mode control with its applications to seesaw systems [ J ]. IEEE Transaeions on Neural Networks, 2004, 15(1) :124 -134.
  • 10Tsai C H, Chung H Y, Yu F hi. Neural-sliding mode control with its applications to Seesaw systems[J]. IEEE Transactions on Neural Net- works, 2004, 15(1) : 124 -134.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部