期刊文献+

偶应力理论的无网格法

Meshless method for couple-stress theory
下载PDF
导出
摘要 根据偶应力理论的基本方程,在能量泛函中引入罚函数来满足偶应力理论的几何约束条件,从而得到偶应力理论的无网格法的控制方程。通过算例,分析了偶应力对带中心圆孔的无限平板在单轴拉伸及纯剪状态下的应力集中的影响,验证了该无网格方法的有效性和可行性。 In accordance with the basic equations of the couple stress theory, the penalty method is introduced into the energy functional to satisfy the geometrical constraint conditions of the couple stress theory. Then the control equation of meshless method for couple-stress theory is obtained. Lastly, numerical examples are given. The problems of the stress concentration around a central circular hole in a field of uniform tension and in a field of pure shear are solved. The results prove good feasibility and high efficiency of the present method.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2008年第4期464-468,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10572077)资助项目
关键词 偶应力理论 无网格法 应力集中 尺寸效应 the couple stress theory meshless method stress concentration size effect
  • 相关文献

参考文献13

  • 1FLECK N A, MUKKER G M, et al. Strain gradient plasticity: theory and experiment [J].Acta Metall Mater, 1994.42 : 475-487.
  • 2STOLKEN J S, EVANS A G. A microbend test method for measuring the plasticity length scale[J]. Acta Mater,1998,46:5109-5115.
  • 3COSSERAT E, COSSERAT F. Theories des Corps Deformables[M]. Hermann et Fils,Paris, 1909.
  • 4刘俊,黄铭,葛修润.考虑偶应力影响的应力集中问题求解[J].上海交通大学学报,2001,35(10):1481-1485. 被引量:13
  • 5HUANG Y, ZHANG L, GUO T F, HWANG K C. Mixed mode near-tip fields for cracks in materials with strain-gradient effects[J]. J Mech Ph ys Solids, 1997,45: 439-465.
  • 6HUANG Y, CHEN J Y, GUO T F, et al. Analysis and numerical studies on mode Ⅰ and mode Ⅱ fracture in elastic-plastic materials with strain gradient effects [J]. Int J Fract, 1999,100:1-27.
  • 7黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)——偶应力理论和SG理论[J].机械强度,1999,21(2):81-87. 被引量:30
  • 8HERRMANN L R. Mixed finite elements for couplestress analysis[A]. Atluri S N, et al. eds. Hybrid and Mized Finite Element Methods[ M]. New York: Wiley, 1983 : 1-17.
  • 9WOOD R D. Finite element analysis of plane couplestress problems using first order stress functions[J]. Int J Num Meth Engng, 1988,26: 489-509.
  • 10庞作会,葛修润,郑宏,王水林.一种新的数值方法——无网格伽辽金法(EFGM)[J].计算力学学报,1999,16(3):320-329. 被引量:86

二级参考文献31

  • 1樊大钧.数学弹性力学[M].北京:新时代出版社,1989..
  • 2杨津光.开式压力机机身主截面的优化设计及八节点等参元计算[A]..三省一市第二届锻压年会论文集[C].,1985..
  • 3Nayroles B, et al. Generalizing the finite element method: diffuse approximation and diffuse elements.J]. Comput Mech, 1992,10:307-318.
  • 4Belytsehko T, Lu Y Y, Gu L. Element-free Galerkin method [J]. Int J Numer Methodds Engrg. 1994,37 : 229-256.
  • 5Onate E, Idelsohn S, Zienkiewicz 0 C. Finite point method in computational mechanics [J]. Int J Numer Meth Engng, 1996,22(39):3839-3866.
  • 6Atluri S N, Sladek J, Sladek V. The Local Boundary Integral Equation (LBIE) and its meshless imple-mentation for linear elasticity [J]. Comput Mech 2000,25: 180-198.
  • 7Beissel S, Belytsehko T. Nodal integration of the element-free Galerkin method [J]. Comput Methods Appl Mech Engrg, 1996,139:205-230.
  • 8Krysl P, Belytschko T. Element-free Galerkin method:convergence of the continuous and discontinuous shape functions [J]. Comput Methods Appl Mech Engrg, 1997,148 (3-4) : 257-277.
  • 9Timoshenko S P, Goodier J N. Theory of elasticity[M]. McGraw-Hall, New York,1970.
  • 10Onaue E, Idelsohn S, Zienkiewicz 0 C, et al. A stabilized finite point method for analysis of fluid mechanics problems [J]. Comput Methods Appl Mech Engrg, 1996,139:315-346.

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部