期刊文献+

Falkner-Skan方程的近似解析解 被引量:3

Approximate analytical solution for Falkner-skan equation
下载PDF
导出
摘要 研究了粘性流体绕流楔型物体的Falkner-Skan边界层方程求解问题。利用Adomian拆分方法,通过引入Crocco变量变换将无穷区间的边界值问题转为初值问题并利用Padé逼近技巧确定初值,给出了一种有效的解析分解方法。进一步,本文设计了一种数值解法,将本文得到的近似解析解及数值结果与早期研究者Hartree等人的结果进行了比较,证明了本文提出的解法的有效性和可靠性。 The Falkner-Skan boundary layer equation is reduced to a nonlinear boundary value problem when Crocco variables transformation is introduced. The approximate analytical solutions are presented by using Adomian decomposition method. Furthermore, a numerical method is designed to give the numerical results to the equation and a comparison is made with Hartree's result. The reliability and efficiency of solution are verified by the numerical results in the literature in close agreement.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2008年第4期506-510,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50476083)资助项目
关键词 边界层 Falkner-Skan方程 Adomian拆分法 Crocco变换 boundary layer falkner-Skan equation adomian decomposition crocco transformation
  • 相关文献

参考文献7

  • 1王兵团,张志刚,朱婧,等.Matlab与教学实验[M].北京:中国铁道出版社,2003.
  • 2ADOMIAN G. A review of the decomposition method in applied mathematics[J]. Journal of Mathemat ical Analysis and Applications, 1988,135 : 501-544.
  • 3WAZWAZ A M. A reliable algorithm for solving boundary value problem for higher-order integral-differential equations [J]. Applied Mathematics and Computation, 2001,118,327-342.
  • 4李国钧.Falkner-Skan方程的数值解[J].华中理工大学学报,1995,23(A01):142-144. 被引量:1
  • 5ADOMIAN G. Nonlinear Stochastic Operator Equations[M]. Academic Press, 1986.
  • 6ZHENG L C, CHEN X H,ZHANG X X. Analytical approximants for a boundary layer flow on a stretching moving surface with a power velocity[J]. International Journal of Applied Mechanics and Engineering ,2004,9(4):795-802.
  • 7KUO B L. Application of the differential transformation method to the solutions of Falkner-skan wedge flow[J].Acta Mechanica, 2003,164 : 161-174.

二级参考文献2

同被引文献28

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部