期刊文献+

基于误差修正的菌体浓度软测量 被引量:2

On-line Measurement of Biomass Concentration by Error-corrected Method
下载PDF
导出
摘要 针对机理模型中参数易受环境影响,结果常常不准,而数据模型对于复杂系统外推能力差的情况,提出了以机理模型为基础,以数据模型为补充,利用数据模型对机理模型的预测结果进行误差修正的方法。将该方法用于菌体浓度的预测,误差修正模型采用RBF神经网络,包含了影响菌体浓度的主要理化因素:温度、溶解氧和pH,以实际测量值为目标对该网络进行训练。训练好的神经网络用来对机理模型的输出进行修正。试验数据表明该方法能有效提高菌体浓度的预测精度。 A novel method is proposed to estimate the biomass concentration on-line by combining a mechanics model of poor extrapolation with a neural network model of unreliable parameters. An error corrected model is built to correct the output of mechanics model. It is made up of a RBF neural network that consisted of temperature, dissolved oxygen and pH and is trained by the practical values. The laboratory result shows this method can effectively increase the accuracy of forecasting biomass concentration.
出处 《计量学报》 EI CSCD 北大核心 2008年第3期280-283,共4页 Acta Metrologica Sinica
基金 国家自然科学基金(60374003) 国家973计划子课题(2002CB312200) 教育部及辽宁省流程工业综合自动化重点实验室开放课题基金(PAL200509)
关键词 计量学 菌体浓度 误差修正 软测量 Metrology Biomass concentration Error corrected Soft sensor
  • 相关文献

参考文献7

  • 1Trelea I C, Titica M. Predictive modelling of brewing fermentation-from knowledge-based to black-box models[J]. Mathematics and Computers in Simulation, 2001, 56:405 -424.
  • 2Warnes M R, Glassey J. On data-based modelling techniques for fermentation processes[ J]. Process Biochemistry, 1996, 2 (31): 147- 155.
  • 3Koprinkova P. Neural network modelling of fermentation processes-specific kinetic rate models [J]. Cybernetics and Systems, 1998, 29: 303- 317.
  • 4Kurtanjek Z. Principal component ANN for modelling and control of baker's yeast production [ J ]. Journal of Biotechnology, 1998, 65:23 - 35.
  • 5Ronen M, Shabtai Y, Guterman H. Rapid process modelling-model building methodology combining unsupervised fuzzy-clustering and supervised neural networks [ J]. Computers Chem Engng, 1998, 22 (Supp) : 1005 - 1008.
  • 6Chai Jie, Jiang Qing-yin, Cao Zhi-kai. Function Approximation Capability and Algorithms of RBF Neural Networks[J]. FR&AI, 21XI2, 15(3) : 310- 315.
  • 7Sanghamitra Bandyopadhyay, Ujjwal Maulik. An evolutionary technique based on K - Means algorithm for optimal clustering in R^N[J]. Information Sciences, 2002, 146: 221- 237.

同被引文献18

  • 1陈蓉,廖强,朱恂.生物膜滴滤塔的废气净化效率[J].工程热物理学报,2005,26(1):122-124. 被引量:9
  • 2桑海峰,王福利,何大阔,张大鹏.发酵过程中生物量浓度的在线估计[J].东北大学学报(自然科学版),2006,27(6):602-605. 被引量:6
  • 3赵明富,廖强,罗渝微,钟年丙,陈艳.光电式生物量浓度在线检测传感器研究[J].压电与声光,2006,28(6):650-653. 被引量:7
  • 4高月华,吕霞付.超声波啤酒酵母浓度在线检测仪[J].压电与声光,2007,29(1):112-114. 被引量:6
  • 5赵明富,廖强,陈艳,钟年丙.光纤生物量浓度在线检测传感器[J].光学精密工程,2007,15(4):478-485. 被引量:15
  • 6赵明富.生物滤器处理恶臭气体及其微生物生态研究[D].重庆:重庆大学,2007.
  • 7Stewart G, Culshaw B, Johnstone W, et al. Optical fiber sensors and networks for environmental monitoring [J ]. Management of Environmental Quality, 2003,14 : 181-190.
  • 8Cox H H J, Deshusses M A. Co-treatment of H2S and toluene in biotrickling filter [J]. Chemical Engineering Journal,2002,87 : 101-110.
  • 9Hofmann M C, Ellersiek D, Kensy F. Galvanic decoupled sensor for monitoring biomass concentration during fermentation processes [ J ]. Sensors & Actuators B: Chemical, 2005,111/112:370-375.
  • 10Soons Zita I T A,Streefland M, van Straten G, et al.Assessment of near assessment of near infrared and "software sensor" for biomass monitoring and control [J]. Chemometrics & Intelligent Laboratory Systems, 2008,94(2): 166-174.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部