期刊文献+

简单面目标与带孔洞面目标间拓扑关系的层次表达方法 被引量:10

A Hierarchical Approach to Topological Relations between a Simple Area and an Area with Holes
下载PDF
导出
摘要 带孔洞的面目标是现实中较为常见的一类复杂目标,它们之间的拓扑关系要比简单面目标复杂得多。本文基于空间划分和目标分解的思想,利用点集(拓扑学)理论中的邻域概念详细分析和描述带孔洞面目标的点集拓扑分量,这种描述方法实质上是简单面目标点集拓扑分量描述的一种自然延展。进而,对简单面目标间拓扑关系的描述和区分方法进行了扩展,层次地分析和区分简单面目标与带孔洞面目标间的拓扑关系。相比于Egenhofer等人提出的代数描述和间接表达方法,本文提出的方法是一种直接描述和层次表达的方法,并且与简单面目标间拓扑关系的表达方法是相统一的。 Topological relations have been a focus of research in many disciplines such as computer science, artificial intelligence, cognitive science, linguistics, robotics and geographic information science. Unfortunately, they have so far only been defined for and applicable to simple objects like single points, continuous lines and simple areas, not involving the design, definition, and description of topological relations operating on the complex objects. This article tries to make an effort to this gap and pays attention to the spatial areas with holes. Based upon the idea of space partition and object decomposition, topological components of an area ob ject with holes are defined by the use of the concept of neighborhood in the point set topology, which is a natu ral extension of the definitions for topological components of a simple area. And then, a hierarchical approach to topological relalions is presented for two simple areas, which is indeed necessary for many practical applica tions. The hierarchical approach is further extended to the topological relations between a simple area and an area with, hole(s). It can be concluded that the proposed approaches are very general, suitable for topological relations of both simple areas and complex areas.
出处 《测绘学报》 EI CSCD 北大核心 2008年第3期330-337,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金资助项目(40501053) 香港特别行政区政府RGC资助项目(Polyu5228/06E) 湖南省自然科学基金项目(07JJ6075) 教育部留学回国人员科研启动基金项目
关键词 拓扑关系 面目标 孔洞 层次表达 topological relation area object hole hierarchical representation
  • 相关文献

参考文献15

  • 1CLEMENTINI E, SHARMA J, EGENHOFER M. Modcling Topological Spatial Relations: Strategies for Query Processing[J]. Computer & Graphics, 1994. 18(6): 815- 822.
  • 2刘亚彬,刘大有.地理信息系统中空间对象间拓扑关系的推理[J].软件学报,2001,12(12):1859-1863. 被引量:10
  • 3刘大有,胡鹤,王生生,谢琦.时空推理研究进展[J].软件学报,2004,15(8):1141-1149. 被引量:34
  • 4EGENHOFER M,FRANZOSA R. Point set Topological Spatial Relations[J]. International Journal of Geographical Information Systems, 1991, 5(2):161-174.
  • 5EGENHOFER M, HERRING J. Categorizing Binary Topological Relationships between Regions, Lines and Points in Geographic Databases[A]. A Framework for the Definition of Topological Relationships and an Approach to Spatial Reasoning within This Framework[C]. Santa Barbara: [s.n.], 1991. 1-28.
  • 6RANDELL D, CUI Z, COHN A. A Spatial Logical Based on Regions and Connection[A].Procccdings of the 3^rd In ternational Conference on Knowledge Representation and Reasoning[C]. Berlin: Springer-Verlag, 1992. 165-176.
  • 7廖士中,石纯一.拓扑关系的闭球模型及复合表的推导[J].软件学报,1997,8(12):894-900. 被引量:12
  • 8CHEN J, LI C M, LI Z L, etal. A Voronoi-based 9-intersection Model for Spatial Relations[J]. International Journal of Geographical Information Science, 2001, 15 (3) : 201-220.
  • 9邓敏,刘文宝,冯学智.GIS面目标间拓扑关系的形式化模型[J].测绘学报,2005,34(1):85-90. 被引量:35
  • 10周晓光,陈军,蒋捷,朱建军.地籍地块间的空间拓扑关系[J].测绘学报,2003,32(4):356-361. 被引量:32

二级参考文献77

  • 1BURROUGH P A, MCDONNELL R A. Principles of Geographical Information Systems [ M]. Oxford: Oxford University Press, 1998.
  • 2COHN A G, GOTTS N M. The 'Egg-Yolk' Representation of Regions with Indeterminate Boundaries [A]. In: Burrough P A and Frank A U (ed), Proceedings of GISDATA-Specialist Meeting on Spatial Objects with Undetermined Boundaries [C]. London:Taylor & Francis, 1996, 171-187.
  • 3LI Zhi-lin, ZHAO Ren-liang, CHEN Jun. An Algebra Model for Spatial Relations [A]. Proceedings of the 3RD ISPRS Workshop on Dynamic and Multi-dimensional GIS [C], Bangkok:[s.n.], 2001, 170-177.
  • 4EGENHOFER M, FRANZOSA R. Point-Set Topological Spatial Relations [J]. International Journal of Geographical Information Systems, 1991, 5 (2):161-174.
  • 5EGENHOFER M, HERRING J. Categoring Binary Topological Relationships between Regions, Lines,and Points in Geographic Databases [R]. Oronoi:Technical report, Department of Surveying Engineering, University of Maine, Oronoi, ME, 1991.
  • 6CLEMENTINI E, DI FELICE P. A Comparison of Methods for Representing Topological Relationships [J]. Information Systems, 1995, 20(3): 149-178.
  • 7CHEN Jun, LI Cheng-ming, LI Zhi-lin, et al. A Voronoi-based 9-intersection Model for Spatial Relations [J]. International Journal of Geographical Information Science, 2001, 15(3): 201-220.
  • 8MUNKRES J R. Topology: A First Course [M].Englewood Cliffs, NJ: Prentice-Hall Inc, 1975.
  • 9CLEMENTINI E, DI FELICE P, OOSTEROM, P.A Small Set for Formal Topological Relationships Suitable for End-User Interaction [A]. In: David Abel,Beng Chin Ooi (ed), Advances in Spatial Databases [C], New York: Springer-Verlag, 1993, 277-295.
  • 10DENG Min. Extended Models on Topological Relations in Vector GISs: Theories and Methods [D].Wuhan: Wuhan University, 2003. (In Chinese)

共引文献116

同被引文献131

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部