期刊文献+

改进的粒子群优化算法 被引量:4

A Modified Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性. Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community. But the standard particle swarm optimization is used resulting in slow after convergence, low search precision and easily leading to local minimum. A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision. The obtained results showed the algorithm computation precision and the astringency are improved, and local minimum is avoided, The experimental results of classic functions show that the improved PSO is efficient and feasible.
出处 《河北工业大学学报》 CAS 2008年第4期55-59,共5页 Journal of Hebei University of Technology
基金 河北省自然科学基金(F2006000109)
关键词 粒子群优化算法 均匀化 变量搜索 初始解 搜索精度 PSO average variable search initial solution search accuracy
  • 相关文献

参考文献6

  • 1Eberhart R, Kennedy J. A new optimizer using particle swarm theory [C]. Proc 6 Int Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, 39-43.
  • 2Shi Y, Eberhart R. A Modified Particle Swarm Optimizer [C]. IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May4-9, 1998, 125-128.
  • 3俞欢军,许宁,张丽平,胡上序.混合粒子群优化算法研究[J].信息与控制,2005,34(4):500-504. 被引量:18
  • 4张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:86
  • 5李建勇.粒子群优化算法研究[D].浙江:浙江大学,2006.
  • 6Clerc. M, Kennedy. J. The Particle Swarm: Explosion, Stability and Convergence in a Multi-Dimensional Complex Space [J]. IEEE Transaction on Evolutionary Computation, 2002, 6 (1) : 58-73.

二级参考文献20

  • 1刘芳,李人厚.基于模糊进化规划和分层方法的神经网络设计方法[J].信息与控制,2004,33(4):385-388. 被引量:3
  • 2张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:86
  • 3[1]Kennedy J, EberhartRC. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995.1942 ~ 1948.
  • 4[2]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [ C]. Nagoya, Japan: IEEE Press, 1995. 39~43.
  • 5[3]Eberhart R C, Simpson P K, Dobbins R W. Computational Intelligence PC Tools [M]. Boston, MA: Academic Press Professional,1996.
  • 6[4]Shi Y, Eberhart R C. A modified particle swarm optimizer [A].Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1998.303~308.
  • 7[5]Shi Y, Eberhart R C. Empirical study of particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1999.1945 ~ 1950.
  • 8[6]Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Seoul, Korea: IEEE Press, 2001. 101 ~106.
  • 9[7]Clerc M, Kennedy J. The particle swarm - explosion, stability,and convergence in a multidimensional complex space [ J ]. IEEE Transactions on Evolutionary Computation, 2002,6( 1 ): 58 ~73.
  • 10[8]Eberhart R C, Shi Y. Comparing inertia weight and constriction factors in particle swarm optimization [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation [ C ]. San Diego,CA: IEEE Press, 2000.84 ~ 88.

共引文献100

同被引文献30

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部