摘要
为了提高安塞油田重复压裂的效果,进行了选井选层的深入研究。通过对安塞油田以往重复压裂效果的分析,挑选出对重复压裂效果影响明显的参数作为安塞油田重复压裂选井选层样本库参数,在此基础之上建立了各样本库参数的评价方法,进而最终建立了安塞油田重复压裂选井选层样本库。最后用模糊模式识别模型、多因素非线性生产统计模型和人工神经网络模型分别分析了安塞油田重复压裂选井选层样本库,并对3种分析结果取交集确定最优井层。通过测试样本检验,所用方法的选井选层结果与实际增产效果结果符合较好。该方法能为安塞油田下一步的重复压裂选井选层工作提供指导性意见。
Deep research on well and layer selection was performed to improve refracturing effect in Ansai Oilfield. Starting with a review of previous refracturing effect, this paper selected these parameters having obvious influence on refracturing effect as the parameters of sample database.Then evaluation method for various parameters in sample database.was presented. Finally sample database of well and layer selection for refracturing was set up in Ansai Oilfield. By the use of fuzzy pattern recognition model, multivariate non-linear statistics method and artificial neural network model, the paper analyzed the sample database separately, and intersection of three results was selected as optimal well and layer. Checked by the testing data, the optimization results are consistent with the actual effect, so the method can be used to direct the well and laver selection for refracturine in the future in Ansai Oilfield.
出处
《石油钻采工艺》
CAS
CSCD
北大核心
2008年第4期58-62,66,共6页
Oil Drilling & Production Technology
基金
中国石油天然气股份公司科技攻关项目“长庆特低渗透油藏低伤害高效改造技术研究”(编号:070119-2)部分成果
关键词
安塞油田
重复压裂
选井选层
模糊识别模型
非线性生产统计模型
人工神经网络模型
Ansai Oilfield
refracturing
well and layer selection
fuzzy pattern recognition model
non-linear production statisticsmodel
artificial neural network model