期刊文献+

液滴撞击液膜喷溅过程的LBM模拟 被引量:7

Simulation of Drop Impact on Liquid Film Using LBM
下载PDF
导出
摘要 气液两相流动现象广泛存在于自然界和工程应用中,而液滴撞击液膜后产生喷溅的过程则是这一类问题的典型代表.采用格子Boltzmann方法(LBM)对上述过程进行了数值模拟.采用基于"单相"(single-phase)模型的LB两相流方法计算得到了3组Reynolds数(Re)和Weber数(We)组合下液滴撞击液膜后所产生的3种效应.结果表明,随着We数和Re数的不断增大,液滴撞击液膜后将产生铺展、喷溅以及喷溅并伴有小液滴脱落等不同现象,计算所得的结果与实验及理论分析的结果相吻合,表明了LBM研究气液两相流动问题的可行性. Impinging of a liquid drop onto a thin film of the same liquid is a classic problem of gas-liquid two phase flows which widely exists in the nature as well as in many industrial applications. In this paper, the impinging process is simulated numerically with the lattice Boltzmann method (LBM). This is a novel method in computational fluid dynamics and has many advantages due to its meso-scale foundation compared to macro-scale equation based traditional methods. A so-called "single-phase" lattice Boltzmann model for interface fluid flow is used to obtain the three important characteristics of impinging with three different combinations of Reynolds number (Re) and Weber number (We). Numerical results show that different phenomena of deposit, splash, and splash with separated fluid drops erupted during impinging will take place as Re and We increase. Numerical results are in good agreement with experimental and analytical results, showing usefulness of LBM in studying gas-liquid two phase flows.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期399-404,共6页 Journal of Shanghai University:Natural Science Edition
基金 上海高校选拔培养优秀青年教师科研专项基金资助项目 上海市重点学科建设资助项目(Y0103)
关键词 气液两相流 格子Boltzmann方法(LBM) 单相模型 喷溅 数值模拟 gas-liquid two phase flow lattice Boltzmann method (LBM) single-phase model splash numerical simulation
  • 相关文献

参考文献17

  • 1PISMEN L M. Nonlocal diffuse interface theory of thin films and the moving contact line [ J]. Physical Review E, 2001, 64:1-9.
  • 2郭锦烈.两相与多相流动力学[M].西安:西安交通大学出版社,2002:6.
  • 3WEISS D A,YARIN A L. Single drop impact on liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation [J]. J Fluid Mech, 1999, 358: 229-254.
  • 4BUSSMAN M, CHANDRA S, MOSTAGHIMI J. Modeling the splash of a droplet impacting a solid surface [J]. Phys Fluids, 2000, 12:3121.
  • 5GRUNAU D, CHEN S Y. A lattice Bohzmann model for multiphase fluid flows [J]. Phys Fluids A, 1993, 5 (10) :2557-2562.
  • 6TOLKE J, SOREN F. An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations [J]. Computers & Fluids, 2006, 35:820- 830.
  • 7SHAN X W, CHEN H D. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Physical Review E, 1993, 47(3) :1815-1820.
  • 8TAKADA N, MISAWA M. Numerical simulation of two and three dimensional two-phase fluid motion by lattice Boltzmann method [ J ]. Computer Physics Communications, 2000, 129:233-246.
  • 9ZHANG R Y, HE X Y, CHEN S Y. Interface and surface tension in incompressible lattice Boltzmann multiphase model [ J ]. Computer Physics Communications, 2000, 129 : 136-139.
  • 10LUO L S, GIRIMAJI S S. Theory of the lattice Boltzmann method: Two-fluid model for binary mixtures [J]. Physical Review E, 2003, 67:1-11.

共引文献1

同被引文献38

  • 1梁刚涛,沈胜强,杨勇.单液滴撞击平面液膜飞溅过程的CLSVOF模拟[J].热科学与技术,2012,11(1):8-12. 被引量:21
  • 2DUAN Ya-li LIU Ru-xun.LATTICE BOLTZMANN SIMULATIONS OF TRIAGULAR CAVITY FLOW AND FREE-SURFACE PROBLEMS[J].Journal of Hydrodynamics,2007,19(2):127-134. 被引量:7
  • 3QIAN Y H, D' HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation [ J ]. Europhysics Letters, 1992, 17(6):479-484.
  • 4QIAN Y H, SUCCI S, ORSZAG S A. Recent advances in lattice Bohzmann computing [ M ] // DIETRICH S. Annual reviews of computational physics Ⅲ. New Jersey : World Scientific Publishing Company, 1995:195-224.
  • 5ZHAO C Y, DAI L N, TANG G H, et al. Numerical study of natural convection in porous media (metals) using lattice Bohzmann method (LBM) [ J ]. International Journal of Heat and Fluid Flow, 2010, 31 (5) :925-934.
  • 6QIAN Y H. Simulating thermohydrodynamics with lattice BGK models [ J ]. Journal of Scientific Computing, 1993, 8 ( 3 ) :231-242.
  • 7SHAN X. Simulation of Rayleigh-B6nard convection using a lattice Boltzmann method [ J]. Physical Review E, 1997, 55(3) :2780-2788.
  • 8HE X, CHEN S, DOOLEN G D. A novel thermal model for the lattice Bohzmann method in incompressible limit [J]. Journal of Computational Physics, 1998, 146 ( 1 ) :282-300.
  • 9GUO Z, ZHENG C, SHI B, et al. Thermal lattice Bohzmann equation for low Mach number flows : Decoupling model [ J ]. Physical Review E, 2007, 75 ( 3 ) : 036704.
  • 10PRASIANAKIS N I, CHIKATAMALA S S, KARLIN I V, et al. Entropic lattice Boltzmann method for simulation of thermal flows [ J ]. Mathematics and Computers in Simulation, 2006, 72 (2) : 179-183.

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部