期刊文献+

多普勒雷达基数据在短时对流天气数值预报中的应用 被引量:6

Application of Doppler Raw Radar Data on Meso-scale Model for Convection Nowcasting and Short-Range Forecast
下载PDF
导出
摘要 ARPS模式中原本有处理多普勒雷达Lev-Ⅲ资料的模块,但在一个雷达测站只处理4个仰角的径向风和反射率的资料。在此基础上,进行修改扩充将我国20世纪末、21世纪初全国布网的新一代多普勒雷达基数据Lev-Ⅱ全部14个仰角的原始径向风和反射率资料应用于ARPS模式。对我国2003年7月一次特大暴雨过程的个例研究表明,初始时刻加入多普勒雷达基数据的数值模拟,能改善短时0~12h的降水范围、强度和降水中心的预报结果。即使在目前雷达初始化数值模式预报低谷区的3~4h处,仍表现出较好的预报水平。因此,本文认为使用多普勒雷达资料初始化中尺度数值模式,能够弥补“spin-up(起转)”带来的副作用,表现在开始预报的第1h,就预报出雷达估计回波的强中心和大致分布,并且预报出与实况接近的降水;改变了由“spin-up”引起的回波估计预报延迟和预报前期没有降水的现象。且试验表明提高数值模式分辨率,可以使多普勒雷达资料弥补“spin-up”副作用的能力更明显。多普勒雷达资料应用于数值模式之所以有这种能力,是由于从多普勒雷达资料可以得到云和降水场的信息,一方面为模式微物理变量提供初值,填补了初始时刻云微物理量的空白,使随后的微物理量演变进程更加合理化,从而对降水预报产生正面影响;另一方面,为中尺度模式的非绝热初始化提供对流尺度数据源,对潜热、动力场和湿度进行调整,有效地实现模式的“hot—start(热启动)”,缩短了“预热”时间。 After some modification, the authors can apply China New Generation Doppler raw radar data which contains all 14 levels reflectivity and radial velocities to ARPS model. Using this method, the authors can study the efforts on weather prediction when applying raw radar data in ARPS model. The authors chose a case study, which is a China mesc-scale characteristics of the heavy rainfall happened on 4-5 July 2003 in the Huaihe Rivor valley. The results show that the 0-12 h precipitation forecast is greatly improved in precipitation range, intensity, the location of precipitation center and radar echo estimate; even the 3-4 h forecast which is the most difficult part in meso-scale NWP model nowadays also shows better. The forecast of radar reflectivity and rainfall in the beginning hour is similar to the observation, which proved that assimilating Doppler raw radar data in this case have alleviated the effort of "spin-up". The reasons are that the model can obtain the information of cloud and precipitation when applying raw radar data to the model. On one hand, this information can provide the initials to microphysical variable in the model, which can speed up microphysical processes and shorten the adjustment time of the model. On the other hand, the cloud and precipitation analysis can provide data source for moisture and diabatic initialization of convective scale numerical model, and then the model has the conditions for "hot start", which also can alleviate the effort of "spin-up".
作者 祝婷 钟青
出处 《气候与环境研究》 CSCD 北大核心 2008年第3期281-290,共10页 Climatic and Environmental Research
基金 国家自然科学基金资助项目40775067和40475026
关键词 多普勒雷达基数据同化 ARPS模式 起转 初值化 对流天气 Doppler raw radar data assimilation, ARPS model, spin-up, initial field, convection
  • 相关文献

参考文献14

  • 1Crook A (MMM/RAP (NCAR)). Numerical prediction of Thunderstorms, where are we now? IAMAS. 2005 Aug 2 11, Beijing, China
  • 2Sun J, Crook N A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part Ⅰ: Model development and simulated data experiments. J. Atmos. Sci. , 1997, 54 : 1642-1661
  • 3Yates D N, Warner T T, Leavesley G H. Prediction of a flash flood in complex terrain. Part Ⅱ: A comparison of flood discharge simulations using rainfall input from radar, a dynamic model and an automated algorithmic system. J. Appl. Meteor. , 2000, 39 : 815-825
  • 4Tong M, Xue M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostratic model: OSSE experiments. Mon. Wea. Rev., 2005, 133: 1789-1807
  • 5Qiu C J, Xu Q. A simple adjointmethod of wind analysis for sigle_ Doppler radar data. J. Atmos. Oceanic Technol. , 1992, 9 ; 588-598
  • 6Hu M, Xue M, Gao J D, et al. 3DVAR and cloud analysis with WSR 88D level- Ⅱ data for the prediction of fort worth tornadic thunderstorms. Part Ⅱ: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev. , 134 (2): 699-721
  • 7Rogers R F, Fritsch J M, Lambert W C. A simple technique for using radar data in the dynamic initialization of a mesoscale model Mon. Wea. Rev., 2000, 128 : 2560 -2574
  • 8Xue M, Wang D H, Gao J D, et al. The advanced regional prediction system storm scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys. , 2003, 82 : 139-170
  • 9徐枝芳,徐玉貌,葛文忠.雷达和卫星资料在中尺度模式中的初步应用[J].气象科学,2002,22(2):167-174. 被引量:29
  • 10托亚,梁海河,马淑芬,朱福康.用雷达观测资料改进MM5初始场的初步试验研究[J].南京气象学院学报,2003,26(5):661-667. 被引量:24

二级参考文献34

  • 1江敦春,党人庆,陈联寿.卫星资料在台风暴雨数值模拟中的应用[J].热带气象学报,1994,10(4):318-324. 被引量:27
  • 2Kasahara A, Balgovind R C, Katz t3. Use of satellite radiometric imagery data for improvement in the analysis of divergent wind in the tropics. Mon. Wea. Rev. , 1988, 116: 866~883.
  • 3Sun J, Crook N A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part Ⅰ: Model development and simulated data experiments. J. Atmos. Sci. , 1997, 54:1642~1661.
  • 4Sun J, Crook N A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part Ⅱ: Retrieval experiments of an observed Florida convective storm. J. Atznos. Sci., 1998, 55: 835~852.
  • 5Sun J, Crook N A. Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting,2001, 16:117~132.
  • 6Synder C, Zhang F. Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea.Rev., 2003, 131:1663~1677.
  • 7Zhang F, Synder C, Sun J. Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev. , 2004, 132:1238~1253.
  • 8Tong M, Xue M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSSE experiments. Mon. Wea. Rev. , 2005, 133:1789~1807.
  • 9Qiu C J, Xu Oo A simple adjoint method of wind analysis for single-Doppler data. J. Atmos. Oceanic Technol. , 1992, 9~588~598.
  • 10Qiu C J, Xu Q. A spectral simple adjoint method for retrieving low-altitude winds from single-Doppler data. J. Atmos.Oceanic Technol. , 1994, 11:927~936.

共引文献109

同被引文献63

引证文献6

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部