期刊文献+

电子商务环境中个性化信息推荐服务的发展 被引量:1

Development of Recommendation of Individualized Information in the E-commerce Environment
下载PDF
导出
摘要 基于因特网的电子商务蓬勃发展,信息强度和密度前所未有,用户数与项目数呈级数增长,个性化信息推荐服务显得越来越重要.电子商务下的个性化信息推荐系统在理论和实践上都得到了很大发展,协同过强推荐技术是最成功的个性化推荐系统. Based on the vigorous development of electronic commerce, the information intensity and the density increase dramatically, the numbers of users and projects grow quickly, the service of personalized information recommendation appears more and more important. The personalized information recommendation system of electronic commerce has been developed largely in the theory and the practice area.
出处 《河南工程学院学报(自然科学版)》 2008年第2期29-32,共4页 Journal of Henan University of Engineering:Natural Science Edition
关键词 个性化信息推荐 电子商务推荐系统 协同过滤 recommendation of individualized information e-commerce recommended system filter in coordination
  • 相关文献

参考文献1

二级参考文献26

  • 1Resnick and Varian. Recommender systems[J]. Communications of the ACM, 1997,40(3):56-58.
  • 2LAWRENCE R D, ALMASI G S, KOTLYAR V, et al. Personalization of supermarket product recommendations[R]. IBM Research Report, 2000.
  • 3SARWAR B M, KARYPIS G, KONSTAN J A, et al. Analysis of recommendation algorithms for e-commerce[A]. Proceedings of the ACM EC'00 Conference[C]. Minneapolis, MN.,2000.158-167.
  • 4RESNICK P, IACOVOU N, SUCHAK M, et al. Grouplens:an open architecture for collaborative filtering of netnews[A]. Proceedings of the Conference on Computer Supported Cooperative Work[C]. Chapel Hill, NC, 1994.175-186.
  • 5SHARDANAND U, MAES P. Social information filtering: algorithms for automating "word of mouth"[A].In Proceedings of the ACM CHI Conference(CHI95)[C].1995.
  • 6GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information apestry[J]. Communications of the ACM,1992,35(12):61-70.
  • 7SCHAFER J B, KONSTAN J,RIEDL J.Recommender systems in e-commerce[A]. Proceedings of the First ACM Conference on Electronic Commerce[C]. Denver, CO, 1999.158-166.
  • 8BEN J, KONSTAN J A, JOHN R.E-commerce recommendation applications[R]. University of Minnesota,2001.
  • 9BREESE J, HECKERMAN D,KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[A]. In Proceedings of the 14th Conference on Uncertaintly in Artificial Intelligence[C].1998.43-52.
  • 10PREM M,RAYMOND J,RAMADASS N.Content-boosted collaborative filtering for improved recommendations[R]. Department of Computer Sciences,University of Texas Austin, TX 78712.

共引文献103

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部