期刊文献+

时标上一类神经网络模型的渐进性 被引量:2

Asymptotic Behavior of a Network of Neurons on Time Scales
下载PDF
导出
摘要 讨论时标上的一类带有McCulloch-Pitts型信号函数的二元神经网络模型的渐进行为,根据信号函数的特点,将模型转化为时标上的4个方程组来考虑,应用时标的微分系统的基本理论,通过对建立的一维映射的迭代规律进行分析,得到该神经网络模型的收敛性. A network of two neurons with McCulloch-Pitts signal function is considered. According to the signal function, analysis of the dynamics of the network is equivalent to discussing four corresponding systems of linear non-homogeneous ordinary differential equations on time scales. The dynamics of the network can be understood in terms of the iterations of a one dimensional mapping, and we obtain the convergence of solutions.
作者 吴海华
出处 《河南工程学院学报(自然科学版)》 2008年第2期72-74,共3页 Journal of Henan University of Engineering:Natural Science Edition
关键词 时标 神经网络 渐进性 时滞 time scale neurons network asymptotic behavior time delay
  • 相关文献

参考文献1

二级参考文献6

  • 1[1]K . Gopalsmy et al. Delay induced periodicity in a neural network of excitation and inhibition[J]. Physica D, 1996,89:395 ~ 426.
  • 2[2]J. J. Hopfield. Neurons with graded response have collective computationalproperties like those of two- state neurons [J]. Proc. Natl. Acad. Sci. USA, 1984, 81:3088 ~3092.
  • 3[3]Lihong Huang,et al. Dynamics of inhibitory artificial neural networks with threshold nonlinearity [ J ]. Fields Institute Communications, 2001,29:235 ~ 243.
  • 4[4]Lihong Huang, et al. The role of threshold in preventing delay- incluced oscillations of frustrated neural networks with McCulloch- Pitts nonlinearity (to appear).
  • 5[5]L. lien, et al. Stability and monotonicity properties of a delayednetwork model[J]. Physica D, 1997, 102:349~363.
  • 6[6]Junjie Wei, et al. Stability and bifurcation in a neural network model with two delays[J]. Physica D, 1999,130:255~ 272.

共引文献1

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部