期刊文献+

一种可配置的LDPC码最小和译码算法 被引量:2

Configurable min-sum decoding algorithm for LDPC codes
下载PDF
导出
摘要 在最小和译码算法(min-sum decoding algorithm,MS decoding)的基础上,提出了一种可配置的LDPC码最小和译码算法(configurable min-sum decoding algorithm,CMS decoding).在CMS译码算法的横向迭代过程中,用一个可配置的最佳修正因子与最小值的和来取代MS算法中所使用的次小值,从而省略了计算次小值的工作,大大降低了解码复杂度.仿真结果表明,在使用最佳因子的情况下,CMS算法能够达到非常接近MS算法的性能,具有较大的实用价值.用理论推导和蒙特卡洛仿真两种方法对不同信噪比下的最佳修正因子进行计算,两种方法得到的结果非常吻合. Based on the min-sum decoding algorithm, a kind of iterative decoding algorithm for low-density parity-check (LDPC) codes, named configurable min sum decoding algorithm (CMS), was proposed. During the horizontal step in the CMS decoding algorithm, it took a configurable optimal correction factor added the absolute minimum to replace the absolute sub-minimum so that it could omit the process of calculating the sub-minimum and simplify the complexity of decoding. Simulation results show that the CMS algorithm can achieve a performance very close to that of the MS algorithm with the optimal correction factors, making it a good candidate for practical systems. The optimal correction factors were obtained at different SNRs by Monte Carlo simulation and theoretical analysis, and the results were found to be in good agreement.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第7期792-796,共5页 JUSTC
基金 国家重点基础研究发展(973)计划(2007CB310602)资助
关键词 LDPC码 最佳修正因子 MS算法 MMS算法 CMS算法 LDPC codes optimal correction factors min-sum modified min-sum configurable min-sum
  • 相关文献

参考文献7

  • 1Gallager R G. Low density parity check codes[J]. IRE Transactions on Information Theory, 1962, IT-18(1): 21-28.
  • 2Mackay D J C, Neal R M. Near Shannon limit performance of low density parity check codes[ J].Electronics Letters, 1996, 32(18): 1 645-1 646.
  • 3Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[M]. San Francisco: Morgan Kaufmann Publishers, 1988.
  • 4Fossorier M P C, Mihaljevic M, Imai. Reduced complexity iterative decoding of low density parity check codes based on belief propagation [J]. IEEE Transactions on Communications, 1999, 47 ( 5 ): 673-680.
  • 5Darabiha A, Carusone A C, Kschischang F R. A bitserial approximate min-sum LDPC decoder and FPGA implernentation[C]// IEEE International Symposium on Circuits and Systems. Kos, Greece: IEEE Press, 2006 : 1-4.
  • 6Chen J H, Fossorier M P C. Near optimum universal belief propagation based decoding of low-density parity check codes [ J]. IEEE Transactions on Communications, 2002, 50(3): 406-414.
  • 7Zhang F, Xu Y, Zhou W Y. High Performance LDPC Codes Construction Based on BIBDs [C]//IEEE Vehicular Technology Conference. INSPEC, 2005, 1: 591-594.

同被引文献5

  • 1Mittelholzer T,Dholakia A,Eleftheriou E. Reduced-complexity decoding of low density parity check codes for generalized partial response channels[J].Magnetics IEEE Transactions on, 2001 ,37?2) : 721 -728.
  • 2Wei X, Akansu A N. Density evolution for low-density parity-check codes under max-log-MAP decoding [ J ].Electronics Letters, 2001,37 ( 18):1125-1126.
  • 3Gallager R G. Low-density party-check codes [ D].Cambridege,MA : MIT Press,1963.
  • 4王冬梅,王秀芳,路敬祎,浦晓威.LLR-BP算法的简化译码算法研究[J].科学技术与工程,2010,10(12):2951-2954. 被引量:1
  • 5马汇淼,马林华,张嵩,刘东斌,冯斌.基于整数运算的LDPC码改进最小和译码算法[J].电视技术,2013,37(17):197-199. 被引量:3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部