期刊文献+

量子系统中基于李雅普诺夫稳定性理论的叠加态的制备(英文) 被引量:5

Superposition state preparation based on Lyapunov stability theorem in quantum systems
下载PDF
导出
摘要 在量子系统中利用被控系统的本征值,构造用来进行坐标旋转的幺正矩阵.通过幺正变换操作抵消系统每个状态所具有的局部相位,并选择变换后的被控状态与目标态之间的误差作为李雅普诺夫函数.在此基础上,基于李雅普诺夫稳定性理论,在保证控制系统稳定的前提下进行控制律的设计,给出了系统状态制备所需控制的详细设计过程,并对结果进行了对比分析.最后,在一个自旋1/2粒子系统上,采用本文所提方法分别对目标态是本征态和叠加态的制备进行了系统仿真实验,并对系统状态演化时间与不同参数情况下控制值之间的关系进行了分析. The unitary matrix was constructed by using eigenstates of the controlled quantum system so as to perform a coordinate rotation on the controlled system. In such a way the local phases of all states of the system were eliminated. Then the error between the controlled state and the target state after transformation was selected as the Lyapunov function, and the system control law was designed based on Lyapunov stability theorem with the precondition that the system is kept stable. The detailed design procedure of the controller needed for preparation of the system states and the comparison analysis of the results were given. Finally, the system simulation experiments on a spin-1/2 particle system were implemented to prepare both the eigen and superposition target states with the proposed control method, and the relation between the system state evolution time and control value was analyzed with different parameters.
作者 丛爽 张媛媛
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第7期821-827,共7页 JUSTC
基金 the National Science Foundation of China(60774098) the Foundation of the Key Laboratory of QuantumInformation,Chinese Academy of Science(200702).
关键词 幺正变换 量子系统控制 李雅普诺夫函数 叠加态 unitary transformation quantum system control Lyapunov function superposition states
  • 相关文献

参考文献10

  • 1CONG Shuang,KUANG Sen.Quantum Control Strategy Based on State Distance[J].自动化学报,2007,33(1):28-31. 被引量:10
  • 2Kuang S, Cong S. Lyapunov control methods of closed quantum systems[J]. Automatica, 2008, 44 (1):98-108.
  • 3Peirce A P, Dahleh M A, Rabitz H. Optimal control of quantum-mechanical systems: existence, numerical approximation and applications [J]. Physical Review A, 1988, 37(12):4 950-4 956.
  • 4Ardeen C J B, Yakovlev V V, Wilson K R, et al. Feedback quantum control of molecular electronic population transfer [J]. Chemical Physics Letters, 1997, 280(1) : 151-158.
  • 5Judson R S, Rabitz H, Teching lasers to control molecules [J]. Physical Review Letters, 1992, 68 (10):1 500-1 503.
  • 6Zhang C W, Li C F, Guo G C. Quantum clone and states estimation for n-state system [J]. Physics Letters A, 2000, 271(1): 31-34.
  • 7CONG Shuang,ZHENG Yisong,JI Beichen,DAI Yi.Overview of progress in quantum systems control[J].Frontiers of Electrical and Electronic Engineering in China,2007,2(2):132-138. 被引量:2
  • 8Mirrahimi M, Rouchon P. Trajectory generation for quantum systems based on Lyapunov techniques[C]// Proceedings of IFAC symposium NOLCOS'2004. Stuttgart, Germany: IEEE Press, 2004.
  • 9Mirrahimi M, Rouchon, P, Turinici G. Lyapunov control of bilinear Schrodinger equations [ J ]. Automatica, 2005, 41(11): 1 987-1 994.
  • 10Boscain U, Chambrion T, Gauthier J P. On the K+P problem for a three-level quantum system [J]. Journal of Dynamical and Control Systems, 2002, 8 (4): 547-572.

二级参考文献1

共引文献9

同被引文献10

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部