期刊文献+

基于SVM的浮动车行驶模式判断模型 被引量:2

SVM based float car driving mode classification model
下载PDF
导出
摘要 浮动车在低速情况下存在两种行驶模式,如不能对上述模式进行准确区分,将严重影响浮动车实时路况计算的精度和效率.研究和设计了一个基于支持向量机(SVM,Support Vector Machine)的浮动车行驶模式判断模型,并针对性地提出了一种简单的基于隶属度矩阵的特征评价和选择方法.实验表明通过上述方法选择的特征子集所训练的分类器在测试样本集上具有92.6%的分类准确性;经过行驶模式分析后,浮动车系统的准确性有显著提升. There are two kinds of driving modes of float car at low speed. The misjudgement of these modes will affect the accuracy and efficiency of the calculation of float ear real-time traffic conditions seriously. A SVM( support vector machine) based float ear driving mode classification model was studied and designed, and a novel membership matrix-based feature evaluation and selection method was proposed. The classifier whose features are selected through this method made a great classification accuracy of 92.6% in test samples. The float ear driving mode analysis enhances the accuracy of exiting system evidently.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第8期976-980,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家863基金资助项目(2006AA12Z315)
关键词 浮动车 采样区间 支持向量机 特征提取 隶属度矩阵 float car sampling interval support vector machine feature selectlon membership matrix
  • 相关文献

参考文献7

  • 1Wu D D, Zhu T Y, Lu W F, et al. A heuristic map-matching algorithm by using vector-based recognition [ C ]// Proc of the International Multi-Conference on Computing in the Global Information Technology ( ICCGI' 07 ). Piscataway : IEEE, 2007 : 18 - 24
  • 2Vapnik V N. The nature of statistical learning theory[ M]. New York : Springer-Verlag, 1995 : 138 - 141
  • 3Langley P. Selection of relevant features in machine learning [ C ]//Proc AAAI Fall Symposium on Relevance. New Orleans : AAAI Press, 1994 : 140 - 144
  • 4Lee H M, Chen C M, Chen J M, et al. An efficient fuzzy classifier with feature selection based on fuzzy entropy [ J ]. IEEE Trans on Systems Man Cybernet, Part B, 2001, 31 ( 3 ) : 426 - 432
  • 5Uncu O, Turksen I B. Two step feature selection: approximate functional dependency approach using membership values[ C ]// Proceedings 2004 IEEE International Conference on Fuzzy System. Piscataway: IEEE, 2004 : 1643 - 1648
  • 6Connon R L, Dave J V, Bezdek J C. Efficient implementation of the fuzzy c-means clustering algorithms[ J]. IEEE Trans on Patten Analysis and Machine Intelligence, 1986, 8 (2) :248 -255
  • 7Han J W, Kamber M. Data mining concepts and techniques [ M ]. Los Altos: Morgan Kaufmann, 2001 : 132 - 136

同被引文献27

  • 1Deng Zhongwei, Ji Minhe. Spatiotemporal structure of taxi services in Shanghai: using exploratory spatial data analysis // Proceedings:2011 19th International Conference on Geoinfor- matics. Shanghai: Geoinformatics, 2011 : 1-5.
  • 2Comert G. Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data. European Journal of Operational Research, 2013, 226(1): 67-76.
  • 3Comert G, Cetin M. Queue length estimation from probe vehicle location and the impacts of sample size. European Journal of Operational Research,2009, 197(1): 196-202.
  • 4Chen Genlang, Jin Xiaogang, Yang Jiangang. Study on spatial and temporal mobility pattern of urban taxi services // Proceedings of 2010 IEEE Inter- national Conference on Intelligent Systems and Knowledge Engineering. Hangzhou: ISKE, 2010: 422-425.
  • 5潘纲,李石坚,齐观德,等.移动轨迹数据分析与智慧城市.中国计算机学会通讯,2012,8(5):31-37.
  • 6Weng Jiancheng, Zhai Yaqiao, Zhao Xiaojuan, et al. Floating car data based taxi operation characteristics analysis in Beijing // 2009 WRI World Congress on Computer Science and In- formation Engineering. Beijing: CSIE, 2009(5): 508-512.
  • 7Sun Jianping, Wen Huimin, Gao Yong, et al. Metropolitan congestion performance measures based on mass floating car data // Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization. Beijing: CSO, 2009(2):109-113.
  • 8Horiguchi R, Iijima M, Hanabusa H. Traffic information provision suitable for TV broadcasting based on macroscopic fundamental diagram from floating car data // 2010 13th International IEEE Conference on Intelligent Transportation Systems.Tokyo: ITSC, 2010:700-705.
  • 9Kerner B, Rehborn H, Schafer R, et al. Traffic dynamics in empirical probe vehicle data studied with three-phase theory: spatiotemporal recon- struction of traffic phases and generation of jam warning message. Physica A: Statistical Mechanics and Its Applications, 2013, 392(1): 221-251.
  • 10Dia H, Thomas K. Development and evaluation of arterial incident detection models using fusion of simulated probe vehicle and loop detector data. Information Fusion, 2011, 12(1): 20-27.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部