期刊文献+

基于二代曲波变换和PCNN的高光谱图像融合 被引量:12

Fusion of hyperspectral images based on second generation curvelet transform and pulse-coupled neural networks
下载PDF
导出
摘要 为了解决高光谱图像的高数据维给后续图像分析和处理带来的困难,提出了一种基于二代曲波变换和脉冲耦合神经网络(PCNN)的融合新算法.利用各波段数据间的局部相关性将整个数据空间划分为若干个相关性较强的独立子空间,在对子空间内的各波段光谱图像进行曲波多分辨率分解的基础上,分别依据各波段图像所含有的信息量对曲波粗尺度系数进行加权融合和利用PCNN的全局耦合特性与脉冲同步特性对细尺度系数进行智能选取,最后由曲波逆变换得到各子空间的融合图像.AVIR IS数据融合实验表明,该算法能有效地实现高光谱数据维数减少和特征提取,相比于提升小波融合算法、主成分变换算法和基于典型融合准则的曲波融合算法,其所提取的图像特征在高光谱异常检测时能得到更多的真实目标. A new fusion algorithm based on second generation curvelet transform and pulse-coupled neural networks (PCNN) was developed in order to solve problems in image processing caused by high dimensions in hyperspectral images. First, according to local correlation between neighboring bands, the whole data space was divided into several independent subspaces with relatively strong correlation; a multi-resolution curvelet decomposition was then performed to images in various bands of subspace. After these steps the coarse scale coefficients from curvelet transform were made a weighted fusion based on the entropy of images in different bands; and the fine scale coefficients were selected intelligently using the global coupling and pulse synchronization characteristics of PCNN. Finally, the fused coefficients were reconstructed to obtain the fusion image of every subspace by an inverse curvelet transform. Fusion experiments on AVIRIS data showed that the proposed method, along with typical fusion rules for target de- tection in hyperspectral images, is very effective in reduction of data dimension and feature extraction. Compared with lift-wavelet fusion algorithm, principal components transform algorithm and the curvelet fusion algorithm based on typical fusion criterion, the image features extracted by the proposed method can get more real objects in hyperspectral abnormal detection.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第7期729-734,共6页 Journal of Harbin Engineering University
基金 高等学校博士学科点基金资助项目(20060217021) 黑龙江省自然科学基金资助项目(ZJG0606-01)
关键词 曲波变换 PCNN 图像融合 目标检测 curvelet transform PCNN image fusion target detection
  • 相关文献

参考文献8

  • 1SHAW G, MANKOLAKIS D. Signal processing for hyperspectral image exploitation [ J ]. IEEE Signal Processing Magazine, 2002, 19( 1 ) : 12-16.
  • 2KONSOLAKIS T A, DIERSEN D. Principal components-based display strategy for spectral imagery[ J]. IEEE Trans Geosci Remote Sens, 2003,41 (3) : 708-718.
  • 3GU Yanfeng, JIA Youhua, ZHANG Ye. Unsupervised hyperspectral target detection based on multiresolution image fusion[ J]. ICSP2004 Proceeding, IEEE Signal Processing Society, 2004, 2: 1076-1079.
  • 4ZHANG Ye, ZHANG Junping, JIN Ming ,et al. Adaptive subspace decomposition and classification for hyperspectral images[ J ]. Chinese Journal of Electronics, 2000, 9 ( 1 ) : 82-88.
  • 5CANDES E J, DEMANET D, DONOHO D L, et al. Fast discrete curvelete transform [ R ]. Passadena : California Institute of Technology ,2005 : 1-43.
  • 6ECKHORN R, REITBOECK H J, ARNDT M, et al. Fature linking via synchronization among distributed Asemblies: simulation of results from cat cortex[J]. Neural Computer, 1990, 2(3): 293-307.
  • 7REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution [ J ]. IEEE Trans Acoust Speech Singal Process, 1990,38 (10) : 1760-1770.
  • 8刘春红,赵春晖.基于提升算法的超谱遥感图像融合分类研究[J].哈尔滨工程大学学报,2004,25(6):794-798. 被引量:3

二级参考文献8

  • 1SWELDENS W. Lifting scheme: A custom-design construction of biorthogonal wavelets[J]. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200.
  • 2KOVACEVIC J, SWELDENS W. Wavelet families of increasing order in arbitrary dimensions[J]. IEEE Transactions on Image Processing, 2000, 9(3): 480-496.
  • 3JAWERTH B, SWELDENS W. Overview of wavelet based multiresolution analyses[J]. SIAM Review,1994, 36(3): 377-412.
  • 4INGRID D, SWELDENS W. Factoring wavelet transforms into lifting steps[J]. Journal of Fourier Analysis, 1998,4(3):247-269.
  • 5ASNER G P, HEIDEBRECHT K B. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations[J]. International Journal of Remote Sensing, 2002, 23(19): 3939-3958.
  • 6SHAW G, MANOLAKIS D. Signal processing for hyperspectral image exploitation[J]. IEEE Signal Processing Magazine,2002, 19(1): 12-16.
  • 7RICK L, ANDREW B. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis[J]. Remote Sensing of Environment, 2004, 90(3): 331-336.
  • 8ZHANG Junping, ZHANG Ye, ZHOU Tingxian. Hyperspectral image multiresolution fusion based on local information entropy[J]. Chinese Journal of Electronics, 2002,11(2):163-166.

共引文献2

同被引文献107

引证文献12

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部