期刊文献+

不同混沌序列对全局最优解的搜索影响 被引量:5

Effect of different chaotic sequences on seeking overall optimal solution
下载PDF
导出
摘要 通过对Logistic映射、立方映射和无限折叠映射进行了比较,并分析了他们的混沌特性,通过实验仿真和数据统计,发现后两种映射所产的混沌序列更均匀些,加快了搜索全局最优解的速度。而混沌优化算法在解决多极点的优化问题时能够体现出它的优势。通过对传统的优化算法和混沌优化算法进行比较,并应用于求解多极点的全局最优解,得出的结论是,在解决多极点的优化问题时,混沌优化算法明显优于传统的优化算法。 Logistic map, cube mapg and unlimited folded maps are compared in this paper and the their chaotic characteristics are analyzed. Through simulation and statistics, it is found that the last two maps generated more even chaotic sequences and quickened the search for global optimal solution. Traditional optimization algorithm can perfectly solve the optimization problem of unipolar. However, it is unsatisfactory for multi-polar. Chaotic optimization algorithm takes its advantages to resolve the problem. In this paper, the traditional and chaotic optimization algorithms are compared, and applied for resolving the multi-target extreme values. It is concluded that chaotic optimization algorithm is superior to the traditional one.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2008年第4期629-631,共3页 Journal of Liaoning Technical University (Natural Science)
基金 辽宁省自然科学基金资助项目(20042176)
关键词 混沌序列 混沌优化算法 全局最优 chaotic sequence chaotic optimization algorithms global optimization
  • 相关文献

参考文献6

二级参考文献23

  • 1李兵.混沌优化方法的改进及其收敛性分析[J].唐山学院学报,2003,16(1):5-6. 被引量:4
  • 2杨皎平,高雷阜,赵宏霞.聚类分析在多极值函数优化中的应用[J].辽宁工程技术大学学报(自然科学版),2004,23(4):567-569. 被引量:3
  • 3Chen L,中日青年国际学术讨论会论文集,1995年
  • 4卢侃,混沌动力学,1990年
  • 5Chen,L.Application of chaotic simulation and self-organizing neural net to power system voltage stability monitoring.Proc.of the 2nd Inter.Forum on Applications of Neural Networks to Power Systems(ANNPS '93)[C],1993,367~372.
  • 6Tsuda,I.Information processing in chaotic dynamical system[J].Jour.Fuzzy Soc.Jap.,1993,4(2):220~228.
  • 7Fujita,T.,T.Watanabe,K.Yasuda,et al.Global optimization method using chaos in dissipative system.Proc.of the 22nd Inter.Conf.on Industrial Electronics,Control,and Instrumentation(IECON'96)[C],1996,(2):817~822.
  • 8Buckley,J.J.,Y.Hayashi.Fuzzy simulation based on fuzzy chaos.2nd IEEE Inter.l Conf.on Fuzzy Systems[C],1993,(2):1039~1043.
  • 9Jovanovic,V.Chaotic descent method and fractal conjecture[J].Int.J.Numer.Meth.Engng.,2000,(48):137~152.
  • 10Chen,L.,K.Aihara.Chaotic simulate annealing by a neural network model with transient chaos[J].Neural Networks,1995,8(6):915~930.

共引文献542

同被引文献40

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部