期刊文献+

基于压电致动的微流体主动控制阀的研究 被引量:5

Study on an Active Controlled Microfluidic Valve Utilizing the Unimorph Circular Piezoelectric Actuator
下载PDF
导出
摘要 介绍了一种采用圆盘形压电振子作为致动元件的微流体主动控制阀。通过圆盘形压电振子的变形改变其与圆环面边界间的过流间隙以实现微流体主动控制阀的开启、关闭及其程度,并建立了微流体主动控制阀的流量控制模型。在此基础上,对作用于圆盘形压电振子上的控制电压和进出口压差对微流体主动控制阀流量的控制特性进行了仿真与分析。研究结果表明,通过改变作用于压电振子上的控制电压可实现阀流量的连续控制,通过改变微流体主动控制阀的进出口压差也可在一定程度上控制阀流量。 An active controlled microfluidic valve utilizing the unimorph circular piezoelectric actuator, in which the on and off states are realized through changing the fluid flow gap between the unimorph circular piezoelectric ac- tuator and the annular boundary by the deformation of the unimorph circular piezoelectric actuator, is presented and the fluid flow control model is established. On this basis, the fluid flow control characteristics of the control voltage on the unimorph circular piezoelectric actuator and the pressure difference between the inlet and outlet of the active controlled microfluidic valve are simulated and analyzed. The research results indicate that the fluid flow of the valve can be continuously controlled through the control voltage applied on the unimorph circular piezoelectric actuator. In addition, the fluid flow of the valve can also be controlled through changing the pressure difference between the inlet and outlet to some extent.
作者 王代华 明亮
出处 《压电与声光》 CSCD 北大核心 2008年第5期547-550,共4页 Piezoelectrics & Acoustooptics
基金 重庆市科委自然科学基金计划资助项目(CSTC,2006BB5154) 新世纪优秀人才支持计划基金资助项目(NCET-05-0765)
关键词 微流体 主动控制阀 圆环面边界 压电振子 microfluidic active controlled valve annular boundary unimorph circular piezoelectric actuator
  • 相关文献

参考文献15

  • 1WHELAN J. Microscale valves drive progress in microfluidic[J]. Drug Discovery Today, 2001, 6 (22): 1134-1135.
  • 2UNGER M A, CHOU Hou-pu, THORSEN T, et al.Monolithic microfabricated valves and pumps by multilayer soft lithography[J]. Science, 2000, 288(5 463) : 113-116.
  • 3SMITH R L, BOWER R W, COLLINS S D. Design and fabrication of a magnetically actuated micromachined flow valve[J]. Sensors and Actuators, A: Physical, 1990, 24(1): 47-53.
  • 4BOHM S, BURGER G J, KORTHORST M T, et al. A micromachined silicon valve driven by a miniature bistable electro-magnetic actuator[J]. Sensors Actuators A: Physical, 2000, 80(1): 77-83.
  • 5HUFF M A, SCHMIDT M A. Fabrication, packaging, and testing of a wafer-bonded microvalve[C]. Hilton Head: Proceedings of the IEEE Solid-State Sensor and Actuator Workshop, 1992: 194-197.
  • 6PICCINI M E, TOWE B C. A shape memory alloy microvalve with flow sensing[J]. Sensors and Actuators, A: Physical, 2006, 128(2): 344-349.
  • 7KRULEVITCH P, LEE A P, RAMSEY P B, et al. Thin film shape memory alloy microactuators [J]. Journal of Microelectromechanical Systems, 1996, 5 (4) : 270-282.
  • 8GAFRON T J, RUSSEK S E, BURKETT S L. Determination of magnetostriction for spin-valve devices with 5.0 and 10.0 nm permalloy layers[J]. Journal of Vacuum Science and Technology, Part A: Vacuum, Surfaces and Films, 2001, 19(4): 1195-1198.
  • 9CHAFRABORTY I, TANG W C, BAME D P, et al. MEMS micro-valve for space applications[J]. Sensors and Actuators, A: Physical, 2000, 83(1): 188-193.
  • 10ROBERTS D C, LI H, STEYN J L, et al. A piezoelectric microvalve for compact high-frequency, highdifferential pressure hydraulic micropumping systems [J]. Journal of Microelectromechanical Systems, 2003, 12(1): 81-92.

同被引文献40

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部