期刊文献+

亚纯函数系数的高阶非齐次线性微分方程解及其解的导数的不动点 被引量:1

The Fix Point of the Derivatives of Solutions and Solutions of Nnhomogeneous Higher Order Linear Differential Equations with Meromorphic Coefficents
下载PDF
导出
摘要 研究了非齐次线性微分方程的解及其解的导数的不动点与超级问题,得到了亚纯函数系数的非齐次线性微分方程的解及其解的导数的不动点的一个结果,所得结果推广了一些相关结果. The fix point of solutions and the derivatives of solutions of comples higher order nonhomogeneous linear differenliad equations are studied, and getting one result of fixed point of higher order nonhomogeneous linear differenliad equations with meromorphic coefficents, the results obtained generalize the related results of some authors.
作者 金瑾
机构地区 毕节学院数学系
出处 《山西大同大学学报(自然科学版)》 2008年第3期1-5,共5页 Journal of Shanxi Datong University(Natural Science Edition)
基金 贵州省教育厅资助项目[2007079]
关键词 亚纯函数系数 线性微分方程 不动点 超级 零点 不动点的收敛指数 meromorphic coefficents linear differential equations fix point hyper order zero point exponent of convergence of fix point
  • 相关文献

参考文献3

二级参考文献12

  • 1陈宗煊,数学物理学报,1996年,16卷,3期,276页
  • 2仪洪勋,亚纯函数的唯一性理论,1995年
  • 3何育赞,代数体函数与常微分方程,1988年
  • 4扬乐,值分布论及其新研究,1982年
  • 5BANK S, LAINE I. On the oscillation theory of f″ + Af = 0 where A is entire [J]. Trans. Amer. Math. Soc., 1982, 273: 351-363.
  • 6KWON Ki-Ho. Nonexistence of finite order solutions of certain second order linear differentiM equations [J]. Kodai Math. J., 1996, 19(3): 378-387.
  • 7GAO Shi-an. Two theorems on the complex oscillation theory of nonhomogeneous linear differential equations [J]. J. Math. Anal. Appl., 1991, 162(2): 381-391.
  • 8CHEN Zong-xuan, YANG Chung-chun. Quantitative estimations on the zeros and growths of entire solutions of linear differential equations [J]. Complex Variables Theory Appl., 2000, 42(2): 119-133.
  • 9HAYMAN W. Meromorphic Functions [M]. Oxford: Clarendon Press, 1964.
  • 10陈宗煊.关于高阶整函数系数微分方程解的超级[J].应用数学学报,1999,22(1):71-77. 被引量:6

共引文献62

同被引文献21

  • 1郑秀敏,陈宗煊,曹廷彬,涂金.一类亚纯函数系数的高阶非齐次线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2004,28(5):431-435. 被引量:2
  • 2CHEN Z X. On the growth of solutions of the differential equation f" + e-Zf' + Q(z)f = 0 [J]. Science in China: Series A, 2001(9): 775-784.
  • 3FREI M. Uber die subnomalen losungen der differential gleichung w"e-Zw(Kconst)w=0 [J]. Comment Math Helv, 1962, 36: 1-8.
  • 4OZAWA, M. On a solution of w" + e-Zw' + (az + b)w = 0 [J]. Kodai Math J, 1980(3): 295-309.
  • 5AMEMIYA I, OZAWA M. Non-existence of finite order solution of w" + e-zw' + Q(z)w = 0 [J]. Hokkaido Math J, 1981, 10: 1-17.
  • 6GUNDERSEN G. On the question of whether f" + e-zf' + Q(z)f = 0 can admit a solution f = 0 of finite order [J]. Proc R S E, 1986, 102A: 9-17.
  • 7LANGLEY J K. On complex oscillation and a problem of Ozawa [J]. Kodai Math J, 1986, 9: 430-439.
  • 8LI C H, HUANG X J. The growth of solutions of a certain higher order differential equations [J]. Mathematica Acta Scientia, 2003, 23A(5): 613-618.
  • 9KWON K H. Nonexistence of finite order solutions of certain second oder linear differential equations [J]. Kodai Math J, 1996, 19: 378-387.
  • 10高仕安,陈宗煊,陈特为.线性微分方程的复振荡理论[M].武汉:华中理工大学出版社,1998199-201.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部