期刊文献+

单-双边约束多体系统的线性互补建模与数值积分方法 被引量:4

LINEAR COMPLEMENTARITY MODEL AND NUMERICAL INTEGRATION SCHEME OF MULTIBODY SYSTEM WITH UNILATERAL AND BILATERAL CONSTRAINTS
下载PDF
导出
摘要 求解受双边约束或者单双边约束共同作用的多体系统动力学问题时,可能发生约束方程的违约问题。为避免处理违约问题,在现有单边约束多体系统动力学的研究成果基础上,给出了一种同时包含单边约束和双边约束的多体系统的动力学建模和计算方法。将双边约束分解为两个单边约束,建立多体系统的动力学模型;通过试算法筛选出起作用的单边约束并给出数值积分算法,并将对未知约束冲量的求解问题转化为等价的线性互补问题;最后通过数值算例验证了方法的有效性。 Considering the fact that the direction of normal force can be determined by the constraints, the methods of modeling and solving the constrained multibody systems with both unilateral and bilateral constraints were presented. Multibody systems were modeled by means of decomposing one bilateral constraint into two unilateral constraints. The active unilateral constraints were screened out by trial and error method, then an integration scheme in the form of the Euler scheme was presented, and the problem of calculating the unknown impulses was equivalently transformed into a linear complementarity problem. The method was validated through numerical example.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第8期38-41,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10672007)
关键词 单边约束 双边约束 线性互补 多体系统 违约问题 unilateral constraints bilateral constraints LCP multibody systems drift problem
  • 相关文献

参考文献13

  • 1Pfeiffer F. The idea of complementarity in muhibody dynamics [J]. Arch Appl Mech, 2003, 72(11-12): 807-816.
  • 2Pfeiffer F G. Applications of unilateral multibody dynamics [J]. Philos T Roy Soc A,2001, 359(1789) : 2609-2628.
  • 3Glocker C. On frictionless impact models in rigid-body systems[J]. Philos T Roy Soc A, 2001, 359 (1789): 2385-2404.
  • 4刘才山,陈滨,彭瀚,乔勇.多体系统多点碰撞接触问题的数值求解方法[J].动力学与控制学报,2003,1(1):59-65. 被引量:11
  • 5Pfeiffer F. Multibody systems with unilateral constraints [ J ]. Pmm-J Appl Math Mec + , 2001, 65(4):665-670.
  • 6Glocker C, Pfeiffer F. Complementarity problems in multibody systems with planar friction [ J ]. Archives of Applied Mechanics, 1993, 63 : 452-463.
  • 7Leine R I, Brogliato B, Nijmeijer H. Periodic motion and bifurcations induced by the Painleve paradox [ J ]. Eur J Mech a-Solid, 2002, 21(5) : 869-896.
  • 8Anitescu M, Potra F A. Formulating Dynamic multi-rigid- body contact problems with friction as solvable linear complementarity problems [ J ]. Nonlinear Dynamics, 1997, 14 : 231-247.
  • 9Cline M B, Pai D K. Post-stabilization for rigid body simulation with contact and constraints[ C]. Proc IEEE Intl Conf on Robotics & Autom. 2003.
  • 10Pfeiffer F. Unilateral multibody dynamics [ J ]. Meccanica, 1999, 34(6) :437-451.

二级参考文献14

  • 1李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 2李庆阳 莫孜中 祁力群.非线性方程组的数值解法[M].北京:科学出版社,1999..
  • 3[1]Stewart D.Rigid-body dynamics with friction and impact.SIAM Review,2000,42(1):3~29
  • 4[4]Lotstedt P.Coulomb friction in two-dimensional rigid body systems.Z Agnew Math U Mech,1981,61:605~615
  • 5[5]Panagiotopoulos PD.Hemivariational Inequalities.New York:Springer-Verlag,1993
  • 6[6]vBaraff D.Fast contact force computation for nonpenetrating rigid bodies.Computer Graphics (Proc SIGGRAPH),1994,28:23~34
  • 7[7]Glocker Ch,Pfeiffer F.An LCP-approach for multibody systems with planar friction,Proc of the CMIS'92Contact Mechanics Int Symposium.Lausanne,Switzerland,1992,13~ 30
  • 8[8]Pfeiffer F,Glocker Ch.Multibody dynamics with unilateral contacts.New York:John Wiley & Sons Inc,1996
  • 9[9]Stewart DE,Trinkle JC.An implicit time-stepping scheme for rigid-body dynamics with inelastic collisions and Coulomb friction.International J Numerical Methods in Engineering,1996,39:2673~2691
  • 10[10]Anitescu M,Potra FA.Formulating Dynamic MultiRigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems.Nonlinear Dynamics,1997,14:231~247

共引文献15

同被引文献41

  • 1潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 2张建科,王晓智,刘三阳,张晓清.求解非线性方程及方程组的粒子群算法[J].计算机工程与应用,2006,42(7):56-58. 被引量:37
  • 3Pfeiffer F. Multibody Dynamics with Unilateral Contacts. Wien, New York: Springer, 2000.
  • 4Brogliato B, ten Dam AA, Paoli L, et al. Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Applied Mechanics Reviews, 2002, 55(2): 107-150.
  • 5Pfeiffer F. Multi-body systems with unilateral constraints. Journal Applied Mechanics, 2001, 65 (4): 665-671.
  • 6Pfeiffer F, Foerg M, Ubrlch H. Numerical aspects of non-smooth multibody dynamics. Computer Methods in Applied Mechanics and Engineering, 2006, 195:6891-6908.
  • 7Klepp HJ. TriM-and-error based method for the investigation of multi-body systems with friction. Journal of Sound and Vibration, 1996, 197(5): 629-637.
  • 8Klepp HJ. The existence and uniqueness of solutions for a single-degree-of-freedom system with two frition-affected sliding joints. Journal of Sound and Vibration, 1995, 185 (2): 364-371.
  • 9Klepp HJ. Modes of contact and uniqueness of solutions for systems with friction-affected sliders. Journal of Sound and Vibration, 2002, 254 (5): 987-996.
  • 10Flores P, Ambosio J, et al. Translational joints with clearance in rigid multibody systems. Journal of Computational and Nonlinear Dynamics, 2008, 011007(3): 1-10.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部