期刊文献+

素域上椭圆曲线密码IP的高效VLSI实现 被引量:4

Effective VLSI Implementation for Elliptic Curve Cryptography IP over GF(p)
下载PDF
导出
摘要 基于素域上的椭圆曲线密码算法,提出一种新型ECC IP的VLSI设计,采用层次化方法,新的点运算策略和改进的Montgomery模乘器,实现了ECC点标量乘、倍点和点加减运算并支持RSA功能。应用NIST推荐的256 bit和521 bit椭圆曲线,每秒分别能运行120次和18次的点乘运算。设计通过了ASIC综合和FPGA验证。 A novel design of Elliptic Curve Cryptography(ECC) IP, using hierarchical method, new point operation scheme and enhanced Montgomery multiplier, is proposed based on ECC over GF(p). It can perform ECC point scalar multiple, point double and point addition/ subtraction operation and support RSA. The IP, under a frequency of 100 MHz, can fulfill 120 and 18 times of point multiple per one second respectively on 256 bit and 521 bit elliptic curve suggested by NIST. The design has passed ASIC synthesis and FPGA verification.
作者 朱华 周玉洁
出处 《计算机工程》 CAS CSCD 北大核心 2008年第16期165-167,共3页 Computer Engineering
关键词 椭圆曲线密码 素域 超大规模集成电路 MONTGOMERY模乘 Elliptic Curve Cryptography(ECC) GF(p) Very Large Scale Integration(VLSI) Montgomery multiple
  • 相关文献

参考文献4

  • 1Ors S B, Batina L, Preneel B, et al. Hardware Implementation of an Elliptic Curve Processor over GF(p)[C]//Proc. of the 14th IEEE International Conference on Application-specific Systems,Architectures and Processors. [S. l.]: IEEE Press, 2003-06.
  • 2Laue R, Huss S A. A Novel Memory Architecture for Elliptic Curve Cryptography with Parallel Modular Multipliers Field Programmable Technology[C]//Proc. of IEEE Computer Society Annual Symposium on VLSI. Montpellier, France: [s. n.], 2006.
  • 3Kaya Koc C, Acar T, Kaliski B S. Analyzing and Comparing Montgomery Multiplication Algorithms[J]. IEEE Micro, 1996, 16(3): 26-33.
  • 4孙怡乐,吴行军,陈弘毅.使用优化的CIOS算法的模运算处理器[J].清华大学学报(自然科学版),2004,44(4):538-541. 被引量:1

二级参考文献6

  • 1Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems [J].Communications of the ACM, 1978, 21(2): 120 - 126.
  • 2Kaya Koc C, Acar T, Kaliski B S Jr. Analyzing and comparing Montgomery multiplication algorithms [J]. IEEE Micro, 1996, 16(3): 26-33.
  • 3Dusse S R, Kaliski B S Jr. A cryptographic library for the Motorola DSP56000 [A]. Advances in CryptologyEurocrypt 90, Lecture Notes in Computer Sience [C]. NewYork: Springer-Verlag, 1990. 230- 244.
  • 4Kwon Tack-Won, You Chang-Seok, Heo Won-Seok, et al. Two implementation methods of a 1024-bit RSAcryptoprocessor based on modified Montgomery algorithm[A]. IEEE International Symposium on Circuits and Systems[C]. Sydney, Australia: IEEE, 2001. 650- 653.
  • 5Grossschadl J. The Chinese remainder theorem and its application in a high-speed RSA crypto chip [A]. 16th Annual Conference on Computer Security Applications [C]. New Orleans, USA, 2000. 384 - 393.
  • 6杨骞,吴行军,周润德,鲁瑞兵.嵌入式RSA加解密处理器[J].清华大学学报(自然科学版),2001,41(7):110-113. 被引量:2

同被引文献23

  • 1汪朝晖,陈建华,涂航,李莉.素域上椭圆曲线密码的高效实现[J].武汉大学学报(理学版),2004,50(3):335-338. 被引量:13
  • 2赵学秘,王志英,岳虹,陆洪毅,戴葵.TTA-EC:一种基于传输触发体系结构的ECC整体算法处理器[J].计算机学报,2007,30(2):225-233. 被引量:4
  • 3王红霞,王金荣,赵宪生.Montgomery模乘算法的改进及其应用[J].计算机工程与应用,2007,43(20):52-55. 被引量:4
  • 4IEEE Standard Association.IEEE Std1363-2000 IEEE Standard Specifications for Public-key Cryptography[S].2000.
  • 5Okeya K,Samoa K S,Spalm C,et al.Signed Binary Representations Revisited[Z].(2004-04-03).http://eprint.iacr.org/2004/195.pdf.
  • 6IEEE P1363-2000,Standard Specifications for Public Key Cryptography[S].USA:IEEE,2000.
  • 7HANKERSON D,MENEZES A,VANSTONE S.椭圆曲线密码学导论[M].张焕国,译.北京:电子工业出版社,2005.
  • 8国家密码管理局.可信计算密码支撑平台功能与接口规范[EB/OL].http://www.oscca.Gov.on/UpFile/File64.PDF,2008
  • 9Orlando G, Paar C. A Scalable GF(p) Elliptic Curve Processor Architecture for Programmable Hardware[C]//Proc. of the 3rd International Workshop on Cryptographic Hardware and Embedded Systems. Paris, France: Is. n.], 2001: 356-371.
  • 10Xu Shengbo, Batina L. Efficient Implementation of Elliptic Curve Cryptosystems on an ARM7 with Hardware Accelerator[C]//Proc. of Information Security Conference. Malaga, Spain: [s. n.], 2001: 266-279.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部