期刊文献+

NMF初始化研究及其在文本分类中的应用 被引量:2

Study of Non-negative Matrix Factorization Initialization and Its Application to Text Classification
下载PDF
导出
摘要 对非负矩阵分解的初始化进行研究,提出针对文本分类的主成分分析(PCA)、有监督PCA(SPCA)和模糊C平均3种初始化方法并进行了实验。多类文本分类的实验结果表明,这些方法有效地解决了初值对结果的影响问题,不同程度地提高了文本分类结果,其中SPCA优于其他2种方法。 The initialization of Non-negative Matrix Factorization(NMF) has studied in this paper. There are three methods of initialization PCA, supervised PCA(SPCA) and Fuzzy C-Mean(FCM) are reported for text classification. Experimentsal results of multi-class text classification indicate that the three methods effectively solve the problem of results effected by initialized values, and improve the text classification results. The SPCA of the three methods is best.
作者 翟亚利 吴翊
出处 《计算机工程》 CAS CSCD 北大核心 2008年第16期191-193,197,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60673090) 国家"973"计划基金资助项目(2005CB321800)
关键词 非负矩阵分解 模糊C平均 文本分类 Non-negative Matrix Factorization(NMF) Fuzzy C-Mean(FCM) text classification
  • 相关文献

参考文献7

  • 1Lee D D, Seung H S. Learning the Parts of Objects by Non-negative Matrix Factorization[J]. Nature, 1999, 401(21): 788-791.
  • 2Hou Xinwen, Zhang Hongjiang, Learning Spatially Loca- lized, Parts-based Representation[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattem Recognition. [S, l.]: IEEE Computer Society Press, 2001: 207-212.
  • 3Satom Tsuge, Masami Shishibori, Shingo Kuroiwa, et al. Dimensionality Reduction Using Non-negative Matrix Factorization for Information Retrieval[C]//Proceedings of IEEE Intemational Conference on Systems, [S, l,]: IEEE Press, 2001: 960-965,
  • 4Paul S, Du Shuyan, Parra L. Recovery of Constituent Spectra Using Non-negative Matrix Factorization[C]//Proc. of SPIE'03. Columbia, USA: [s. n.], 2003: 321-331.
  • 5Koren Y, Cannel L. Robust Linear Dimensionality Reduction[J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(4): 459-470.
  • 6北京大学数学系几何与代数教研室代数小组.高等代数[M].2版.北京:高等教育出版社,2002.
  • 7徐月芳.基于遗传模糊C-均值聚类算法的图像分割[J].西北工业大学学报,2002,20(4):549-553. 被引量:37

二级参考文献4

共引文献38

同被引文献13

  • 1庞新生.多重插补处理缺失数据方法的理论基础探析[J].统计与决策,2005,21(02X):12-14. 被引量:19
  • 2Cool A L. A review of methods for dealing with missing data[ C ]. Paper presented at the Annual Meeting of the Southwest Educational Research Association, Dallas, TX ,2000 : 1 - 34.
  • 3Gu Dong-bing. Distributed EM algorithm for Gau- ssian mixtures in sensor networks [ J ]. IEEE Transactions on NeuralNetworks, 2008, 19 ( 7 ) : 1154 - 1166.
  • 4Allison P D. Missing data [ D]. Thousand Oaks, CA Sage, 2002.
  • 5Qin Yong-song and Zhang Shi-chao. Empirical likelihood confidence intervals for differences between two datasets with missing data [ J ]. Pattern Recognition Letters, 2008,29 (6) :803 -812.
  • 6D. D. Lee, H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 1999,401:788 - 791.
  • 7Stefan Wild, James Curry, Anne Dougherty. Improving non-negative matrix factorizations through structured ini- tialization [ J ] , Pattern Recognition, 2004,37 : 2217 - 2232.
  • 8P. M. Kuhnert, K. A. Do, R. McClure. Combining non- parametric models with logistic regression: an application to motor vehicle injury data [ J]. Computational Statistics and Data Analysis, 2000,34:371 - 386.
  • 9L. Breiman, J. H. Friedman, R. A,Olshen, et al. Classifi- cation and Regression Trees [ M ]. Belmont, CA: Wad- sworth, 1984.
  • 10庞新生.分层随机抽样条件下缺失数据的多重插补方法[J].统计与信息论坛,2009,24(5):19-21. 被引量:7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部