期刊文献+

核子类凸包样本选择方法及其SVM应用 被引量:4

Kernel Subclass Convex Hull Sample Selection Method and Its Application on SVM
下载PDF
导出
摘要 提出一种基于核函数方法的类内训练样本选择方法——核子类凸包样本选择法,并将其用于支持向量机。该样本选择方法通过迭代方法,逐一选择了那些经映射后"距离已选样本",并将其映射、生成"凸包最远的样本"。实验结果表明,该方法选择的少量样本使支持向量机获得了较高的识别比率,减少了存储需求,提高了分类速度。 A novel intra-class sample selection method named kernel subclass convex hull sample selection algorithm is proposed and used for SVM. The algorithm is an iterative procedure based on kernel trick. At each step, only one sample furthest to the convex hull spanned by chosen samples is picked out in the feature space. Experiments show that a significant amount of training data can be removed without sacrificing the performance of SVM, while the memory requirements and the computation time of the classifiers are reduced significantly.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第16期212-214,共3页 Computer Engineering
关键词 样本选择 凸包 支持向量机 核函数 人脸识别 sample selection convex hull support vector machine kernel function face recognition
  • 相关文献

参考文献8

  • 1Shin H, Cho S. Neighborhood Property Based Pattern Selection for Support Vector Machines[J]. Neural Computation, 2007, 19(3): 816-855.
  • 2Keerthi S S, Shevade S K, Bhattacharyya C. A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design[J]. IEEE Transactions on Neural Networks, 2000, 11(1):124-136.
  • 3Lee Y, Mangasarian O L. RSVM: Reduced Support Vector Machines[C]//Proc. of the SIAM International Conference on Data Mining. San Jose, CA: [s. n.], 2001.
  • 4Almeida M B, Braga A R Braga J E Svm-km: Speeding Svms Learning with a Priori Cluster Selection and K-means[C]//Proc. of the 6th Brazilian Symposium on Neural Networks. Rio de Janeiro, Braz: [s. n.], 2000: 162-167.
  • 5Wang Jigang. Training Data Selection for Support Vector Machines[J]. Lecture Notes in Computer Science, 2005, 3610: 554- 564.
  • 6Schohn G, Cohn D. Less is More: Active Learning with Support Vector Machines[C]//Proceedings of the 17th International Conference on Machine Learning. [S. l.]: IEEE Press, 2000: 839- 846.
  • 7Weyrauch B, Huang J, Heisele B, et al. Component-based Face Recognition with 3D Morphable Models[C]//Proc. of the 1st IEEE Workshop on Face Processing in Video. Washington, D. C., USA: [s. n.], 2004.
  • 8Guo G D, Li S Z. Support Vector Machines for Face Recognition[J]. Image and Vision Computing. 2001, 19(9/10): 631-638.

同被引文献62

  • 1陈钊.四川重点区域发展战略研究[J].西华大学学报(哲学社会科学版),2005,24(4):17-20. 被引量:2
  • 2张杰.重庆、四川主要经济指标的比较研究[J].重庆工商大学学报(西部论坛),2006,16(3):43-45. 被引量:2
  • 3张杰.川渝经济发展水平的比较研究[J].重庆工学院学报,2006,20(7):47-49. 被引量:5
  • 4卜建清,王树栋,罗韶湘.由车激响应识别桥梁损伤的灵敏度方法[J].振动与冲击,2007,26(7):80-84. 被引量:13
  • 5Vapnik V.The Nature of Statistical Learning Theory[M].New York,USA:Springer-Verlag,1995.
  • 6Oladunni O O,Trafalis T B.A Regularized Pairwise Multi-classification Knowledge-based Machine and Applications[J].European Journal of Operational Research,2009,195(3):924-941.
  • 7Vapnik V.Statistical Learning Theory[M].New York,USA:John Wiley & Son,1998.
  • 8Krebel U.Pairwise Classification and Support Vector Machines[M] // Sch(o)lkopf B,Burges C J C,Smola A J.Advances in Kernel Methods:Support Vector Learning.Cambridge.MA,UK:MIT Press,1999:255-268.
  • 9Debnath R,Takahide N,Takahashi H.A Decision Based One-against-one Method for Multi-class Support Vector Machine[J].Pattern Analysis and Application,2004,7(2):164-175.
  • 10Wang Ye,Huang Shangteng.Reducing the Number of Sub-classifiers for Pairwise Multi-category Support Vector Machines[J].Pattern Recognition Letters,2007,28(15):2088-2093.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部