期刊文献+

蚁群算法在中厚板液压伺服系统中的应用研究 被引量:2

Application of Ant Colony Algorithm in Plate Hydraulic Servo Control System
下载PDF
导出
摘要 为解决在环境及负载扰动影响下,中厚板液压位置伺服系统采用常规控制方式很难取得理想效果的问题,首先为便于分析研究,根据中厚板液压系统各环节的机制特性,分别建立了位移传感器、伺服放大器、伺服阀、液压缸及轧辊组合等环节的数学模型。然后在对性能优良的离散蚁群算法改进基础上,通过多层次异构搜索机制对解空间精细搜索,得到可用于连续域寻优的多层蚁群算法。并将改进算法应用到液压位置伺服系统中,根据系统性能指标对控制器进行智能优化。仿真结果表明,采用多层蚁群优化算法的液压位置伺服系统收敛速度明显加快,适应能力与鲁棒性也要好于常规控制方式。 To settle the problem that plate hydraulic servo control system using general manner is difficult to get ideal results under the influence of changing in the environment and load disturbance, a system model was established according to the mechanism characteristic of servo system, based on the ant colony optimization ( ACO), a multilayer ant colony optimization for continuous domains was proposed using heterogeneous search on solution space, the improved algorithm was used for intelligent optimization of hydraulic servo controller according to performance indicators. The simulation results indicate that the convergent speed of the system using multilayer ant colony optimization is faster than the others, and it has satisfied adaptability and robustness
出处 《机床与液压》 北大核心 2008年第8期266-269,230,共5页 Machine Tool & Hydraulics
关键词 中厚板 液压位置伺服系统 蚁群算法 Plate Hydraulic servo control system Ant colony algorithm
  • 相关文献

参考文献9

二级参考文献61

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2孙海波,陈德福,吕斌,张力达.新的液压AGC技术在1200WS四辊可逆冷轧机上的应用[J].冶金自动化,1996,20(3):11-14. 被引量:9
  • 3高俊斌.MATLAB5.0语言与程序设计[M].武汉:华中理工大学出版社,1998..
  • 4马振华 刘坤林 等.运筹学与最优化理论卷[M].北京:清华大学出版社,1998.254-278.
  • 5[1]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the travelling salesman problem[J]. IEEE Trans Evol Comp,1997,1(1):53-66.
  • 6[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans SMC: Part B,1996,26(1):29-41.
  • 7[3]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[A]. Proc IEEE Int Conf Evol Comp[C]. Piscataway, 1996.622-627.
  • 8[4]Boryczka U, Boryczka M. Generative policies in ant systems for scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles,1998.1:382-386.
  • 9[5]Boryczka U. Learning with delayed rewards in ant sys-tems for the job-shop scheduling problem[A]. First Int Conf Rough Sets Current Trends Comp[C]. Bruxelles,1998.271-274.
  • 10[6]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem[J]. J Oper Res Soci,1999,50(2):167-176.

共引文献218

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部