期刊文献+

一类具时滞与捕获的捕食与被捕食模型的定性分析(Ⅰ) 被引量:3

Qualitative Analysis of A Predator-Prey System with Infection of Prey Population
下载PDF
导出
摘要 考查了一类具时滞与捕获的捕食与被捕食模型,通过相应的特征方程,对滞量的影响做了分析,得出了当滞量经过一序列值的时候,系统经历Hopf分支的结论。 A predator-prey model with time delay and harvesting is studied. The effect of time delay on the predator-prey model is investigated by analyzing the corresponding characteristic equation. It is found that a Hopf bifurcation takes place when time delay reaches a sequence of certain values.
作者 郭艳芬
机构地区 东北林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2008年第8期81-83,共3页 Journal of Northeast Forestry University
基金 东北林业大学青年科研基金资助项目
关键词 捕食与被捕食系统 时滞 HOPF分支 Predator-prey system Time delay Hopf bifurcation
  • 相关文献

参考文献7

  • 1Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources [ M ]. New York : Wiley, 1990.
  • 2Brauer F, Soudack A C. Coexistence Properties of Some Predator Prey Systems under Constant Rate Harvesting and Stocking[ J ]. J Math Biol,1981 (12) :101 - 114.
  • 3Virtala M. Harvesting a Lichen - Reindeer System in an Uncertain Environment [ J ]. Ecol Model, 1996 (89) :209 - 224.
  • 4Song Yongli, Wei Junjie. Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system[ J ]. J Math Anal Appl,2005(301 ) :1 -21.
  • 5任洪善.一类一阶双滞量时滞方程零解渐近稳定的代数判据(英文)[J].黑龙江大学自然科学学报,2005,22(2):267-276. 被引量:2
  • 6徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 7Hale J K. Theory of functional differential equations [ M ]. New York : Spring - Verlag, 1977.

二级参考文献17

  • 1Goh B S. Global stability in two species interactions. J Math Biol, 1976, 3(3-4): 313-318
  • 2Hastings A. Global stability in two species systems. J Math Biol, 1978, 5(4): 399-403
  • 3He X Z. Stability and delays in a predator-prey system. J Math Anal Appl, 1996, 198(2): 355-370
  • 4Aièllo W G, Freedman H I. A time delay model of single-species growth with stage structure. Math Biosci,1990, 101(2): 139-153
  • 5Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J Appl Math, 1992, 52(3): 855- 869
  • 6Wang W, Chen L. A predator-prey system with stage structure for predator. Comput Maria Appl, 1997,33(8): 83 -91
  • 7Magnusson K G, Destabilizing effect of cannibalism on a structured predator-prey system. Math Biosci,1999, 155(1): 61-75
  • 8Zhang X, Chen L, Neumann A U. The stage-structured predator-prey model and optimal havesting policy.Math Biosci, 2000, 168(2): 201- 210
  • 9Ma Z. Mathematical Modeling and Research in Ecology. Hefei: Anhui Educational Publishing House,1996. 25- 26
  • 10Cushing J M. Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics 20. Heidelberg, Springer, 1979. 13-70

共引文献30

同被引文献9

  • 1马知恩.种群生态学的数学建模与研究[M].安徽教育出版社,1994..
  • 2马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1994.41-45.
  • 3Chattopadhyay J, Pal S. Viral Infection on Phytoplankton Zooplankton System-A Mathematical Model [ J ]. Ecol Model ,2002,151 ( 1 ) : 15 -28.
  • 4J. Graunt. Natural and Political Observations Mentioned in a Following Index, and Made upon the Bills by Mortality of John Graunt Citizen of Londen. 1662.
  • 5T. R. Malthus. An Essay on the Principle of Population as It Affects the Future Improvement of Society. London. 1798.
  • 6V. Volterra. Sui Tentative Di Applicazione Delle Mathematiche Alle Seienze Biologiche e Sociali Ann R. Vniv Roma. 1901 (2) :3 - 28.
  • 7V. Voherra. Variazione e Fluttuazini del Numero Individui in Specie Animali Conviventi Mem. Accad Nazionale Lincei 1926 (2) :31 -113.
  • 8Chattopadhyay J,Pal S.Viral Infection on Phytoplank-ton Zooplankton System-A Mathematical Model[J].Ecol.Model.,2002(151):15-28.
  • 9郭艳芬.一类具时滞与捕获的捕食与被捕食模型的定性分析(Ⅱ)[J].东北林业大学学报,2009,37(4):81-82. 被引量:3

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部