摘要
设M是de Sitter空间S1n+1(c)中具有常平均曲率的n维完备类空超曲面,文章证明了:当H2>c,n=2或者n2H2≥4(n-1)cn,≥3时,如果M的第二基本形式模长平方S<-nc+(n/2(n-1))[n2H2-(n-2)∣H∣√n2H2-4(n-1)c],则M是全脐超曲面。
Let M be a n-dimensional complete space-like hyersurface with constant mean curvature in a de Sitter space S16n+1(c).In this paper, it is proved that when H2〉c,n=2 or n^2H^2≥4(n-1)c,n≥3 if the square of lenth of the second fundamental form of M:S〈-nc+n/2(n-1)[n^2H^2-(n-2)|H|√n^2H^2-4(n-1)c],then M is totally umbilical hypersurfaces.
出处
《四川理工学院学报(自然科学版)》
CAS
2008年第4期3-5,共3页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金
国家自然科学基金(50608072)