摘要
本文主要讨论了函数exp(q)的pade逼近的A(α)-可接受性.对a∈(0,π/2),m≥n,m≥2,得到了exp(q)的有理逼近R(q)为A(α)-可接受的充要条件和paed逼近(q)为A(α)-可接受的几个充分条件.证明了(q)是A(π/3)-可接受的.文末构造了5阶A(π/3)-稳定的四阶导数单步方法与三阶导数混合单步法.
In this Paper, we have got the necessary and sufficient conditions off A(α)-accept- ability for rational approximations to the fuction exp (q). Some sufficient conditions to guarantee A(α)-acceptability of Pade approximations R(q) to function exp(q) were giren, where a∈(0,π/2), m≥n,m≥2. Furthermore,the condition of A(α)-acceptability of rational approximations to exp (q) isepuivalent to the nonnegativity of of a real polynomial. Finally, the auther proved that R(q) is A(π/3)-acceptable.By this two A(π/3) -stable multiderivative (hybrid) one-step methods are constructed.
出处
《仲恺农业技术学院学报》
1997年第2期26-31,共6页
Journal of Zhongkai Agrotechnical College
基金
机械工业部科技基金