期刊文献+

一阶时变双曲型发展方程的古典解

The classical solution of the first order evolution equations in the hyperbolic case
下载PDF
导出
摘要 研究了一类时变双曲型Cauchy问题。主要是一阶齐次、非齐次、半线性Cauchy问题的古典解的存在性和唯一性。 In this paper, a class of initial value problems in the hyperbolic case were concerned. We proved the existence and uniqueness of the classical solution of the first order evolution equations in the hyperbolic case.
作者 汤小燕
出处 《遵义师范学院学报》 2008年第4期71-73,共3页 Journal of Zunyi Normal University
关键词 双曲型发展方程 发展系统 古典解 evolution equations in the hyperbolic case evolution systems classical solution
  • 相关文献

参考文献7

  • 1A.Pazy.Semigroups of linear operators and applications to partial differential equations[]..1983
  • 2N.U.Ahmed.Semigroup theory with applications to systems and control[]..1988
  • 3X.Xaing,Y.Peng,W.Wei.A general class of nonlinear impul-sive integral differential equations and optimal controls Ba-nach spaces[].DCDS.2005
  • 4J.L.Lions.Optimal control of systems governed by partial differential equations[]..1971
  • 5MARKUS POPPENBERG.On the local well posedness of quasilinear Schr?dinger equations in arbitriry space dimension[].Journal of Differ-ential Equations.2001
  • 6TKATO.Integration of the equation of evolution in a Banach space[].JMathSocJapan.1953
  • 7RADON M.First-order differential equations of the hyperbolic type[].Univercitis Iagellonlcae Acta Mathematic Fasciulus.2002

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部