期刊文献+

一类n次微分系统的全局分支 被引量:1

Global bifurcations of a kind of n-dimensional differential system
下载PDF
导出
摘要 利用已有的关于Lienard系统极限环存在性和唯一、唯二性的诸多结论,结合旋转向量场理论,研究了n次微分系统x.=y,y.=-(hxn-1+δ)y-(xn-x)(h>0)当n为大于1的正整数时极限环的个数及其相互位置,并利用先前的结果作为特例,得到了相当完善的结果. By virtue of some known results of the existence on at most one or two limit cycles of the Lienard systems, using the theory of rotated vector field, we study the number and relative positions of the limit cycles of the n - demensional differential system x=y,y=-(hx^n-1+δ)y-(x^n-x)(h〉0), where n is a positive integer greater than 1 . We obtain rather perfect results, which include many results that have been gained by former scholars as special cases.
作者 胡召平
出处 《上海师范大学学报(自然科学版)》 2008年第4期362-368,共7页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金项目(10671127)
关键词 LIENARD系统 极限环 旋转向量场 lienard system linit sycle rotated vector field
  • 相关文献

参考文献8

二级参考文献41

共引文献39

同被引文献9

  • 1周毓荣,韩茂安.包围多个奇点的极限环的唯一性与唯二性[J].数学学报(中文版),1993,36(4):505-515. 被引量:15
  • 2陈芳跃.高次退化的非线性向量场分支[J].应用数学学报,1995,18(1):8-15. 被引量:8
  • 3Carr J.Applications of Centre Manifold Theory[M].New York:Spring-Verlag,1981.
  • 4Chow S-N,Hale J K.Methods of Bifurcation Theory[M].New York:Spring-Verlag,1996.
  • 5Kopell N,Howard L N.Bifurcations and trajectories joining critical points[J].Adv.Math., 1975,18:306-358.
  • 6Li C Z,Rousseau C.A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation:the cusp of order 4[J].Journal of Differential Equations, 1989,79(1):132-167.
  • 7Wang M S,Luo D J.Global bifurcation of some cubic planar systems[J].Nonlinear Analysis, 1984,8(7):711-722.
  • 8Li J B.Distribution of limit cycles of the planar cubic system[J].Sientia Sinica(Ser A),1985, 28(1):35-46.
  • 9王现.+(α_1+3α_3X^2)-β_1X+β_1X+β_3X^3=0的大范围分析[J].应用数学,1990,3(2):59-64. 被引量:10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部