期刊文献+

一种用于模体预测的改进吉布斯采样算法

An Improved Gibbs Sampling Method for Motif Finding
下载PDF
导出
摘要 当前有许多用于预测模体的算法,但没有一种算法能有效地应用在所有场合。依据位置权重矩阵的模体模型,提出一种改进的吉布斯采样算法来识别模体。该算法有效地克服了吉布斯采样算法的局部收敛性,并且可以直观地控制预测模体的保守度。同时引入了模体库的概念,并通过分析模体库数据,提高了模体预测的灵活性和准确率。设计了仿真数据,并选择了已被生物实验验证过的模体数据,证实本算法的可行性和有效性。与当前常用的基于吉布斯采样改进的算法比较,本算法有效地提高了模体预测的准确性、灵活性和稳定性。 Many motif-finding programs have been developed, but no program is clearly suitable to in all situations. In this paper, an improved Gibbs sample algorithm was proposed to find motif according to the motif model of Position Weight Matrix (PWM). The improved approach overcame the local convergence of Gibbs sample algorithm and can control intuitively the conservation for motif finding. The motif base concept was adapted to increase the flexibility and the accuracy for motif finding by analyzing motif data base. The simulated data and the verified biological data are used to test the feasibility and effectiveness of improved approach. Compared with other conventional algorithms, the proposed algorithm increased the accuracy, flexibility and stability effectively for the motif finding.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2008年第4期537-542,共6页 Chinese Journal of Biomedical Engineering
关键词 吉布斯采样 模体 位置权重矩阵 模体寻找 Gibbs sampling motif PWM motif finding
  • 相关文献

参考文献15

  • 1Thijs G, Marchal K, Lescot M, et al. A Gibbs Sampling method to detect over-represented motifs in upstream regions of coexpressed genes [ J ]. Journal of Computational Biology, 2002,9 (2) : 447 - 452.
  • 2Robinson M. Improving Computational Predictions of Cis-Regulatory Binding Sites[A]. In: Pacific Symposium on Biocomputing[C]. USA : World Scientific Publishing Company, 2006,11 : 391 - 402
  • 3Shane T. Jenscn. BioOptimizer: a Bayesian scoring function approach to motif discovery [ J ]. Bioinfomatics, 2004, 20 ( 10 ) : 1557- 1564.
  • 4谢雪英,孙啸,谢建明,陆祖宏.基于信息量的调控元件预测方法[J].生物物理学报,2003,19(4):424-430. 被引量:3
  • 5Lawrence, CE, Ahschul, SF, Boguski, MS, et al. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment[J]. Science, 1993, 262: 208-214.
  • 6Bailey TL, Elkan CP. Fitting a mixture model by expectation maximization to discover motifs in biopolymers[A]. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology[ C ]. Menlo Park, California : AAAI Press, 1994. 28 - 36.
  • 7Hertz G, Stormo G. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences [ J ]. Bioinformaties, 1999, 15(7):563-577.
  • 8Liu, JS, Neuwald AF, Lawrence CE. Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies [ J]. Journal of the American Statistical Association, 1995, 90:1156 - 1170.
  • 9Neuwald AF, Liu JS. Lawrence CE. Gibbs motif sampling: Detection of bacterial outer membrane protein repeats [J]. Protein Science, 1995, 4,: 1618- 1632.
  • 10Hughes JD, Estep PW, Tavazoie S, et al. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saeehaomyces eerevisiae [ J ]. J Mol Biol, 2000, 296(5): 1205- 1214.

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部