期刊文献+

与人类疾病相关的几种线粒体氨基酰-tRNA合成酶 被引量:3

Mitochondrial Aminoacyl-tRNA Synthetases Related to Human Diseases
下载PDF
导出
摘要 氨基酰-tRNA合成酶是一类古老的蛋白质,催化蛋白质生物合成中的第一步反应.已经发现氨基酰-tRNA合成酶还参与大量的其他生命过程,如编校、tRNA的成熟与转运、RNA的剪切、细胞因子等功能.最近的研究结果表明,线粒体氨基酰-tRNA合成酶与人类的疾病密切相关.人线粒体精氨酰-tRNA合成酶基因2号内含子中的一个单点突变导致该基因的转录本被异常剪接,造成脑桥小脑发育不全.人线粒体天冬氨酰-tRNA合成酶基因上的一系列突变致使其mRNA被快速降解或者蛋白质氨基酸一级结构的改变,导致脑干脊髓白质病变及乳糖增高症.人线粒体亮氨酰-tRNA合成酶基因的一个单核苷酸多态性与2型糖尿病密切相关.这些研究结果进一步增强了我们对于氨基酰-tRNA合成酶的生物学功能的认识,并将促进对由线粒体氨基酰-tRNA合成酶所引起线粒体病的致病机理以及治疗方法的研究. Aminoacyl-tRNA synthetase is a class of ancient proteins, catalyzing the first reaction of protein biosynthesis. It has been found that they also participate in a lot of other cellular processes such as editing, tRNA maturation and transfer, RNA cleavage and function as cellular factors. Recent studies showed that some mitochondrial aminoacyl-tRNA synthetases are closely related with human diseases. A single point mutation in intervening sequence 2 (IVS2) of human mitochondrial arginyl-tRNA synthetase gene causes abnormal cleavage of its transcript, resulting in pontocerebellar hypoplasia. A series of mutations in human mitochondrial aspartyl-tRNA synthetase gene cause rapid decay of its mRNA or alteration in protein primary sequence, leading to leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. A single nucleotide polymorphism in human mitochondrial leucyl-tRNA synthetase is significantly associated with type 2 diabetes. These results further enhance our understanding about the cellular function of aminoacyl-tRNA synthetase and promote studies toward the mechanism and therapy of aminoacyl-tRNA synthetase-causing mitochondrial diseases.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2008年第8期853-858,共6页 Progress In Biochemistry and Biophysics
基金 国家自然科学基金资助项目(30330180)~~
关键词 线粒体 氨基酰-TRNA合成酶 疾病 mitochondrion, aminoacyl-tRNA synthetase, disease
  • 相关文献

参考文献27

  • 1Schimmel P. Aminoacyl-tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem, 1987, 56: 125- 158
  • 2Ibba M, S611 D. Aminoacyl-tRNA synthesis. Annu Rev Biochem, 2000, 69:617-650
  • 3Eriani G, Delarue M, Poch O, et al. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990, 347 (6289): 203-206
  • 4Martinis S A, Plateau P, Caverelli J, et al. Aminoacyl-tRNA synthetase: a family of expanding functions. EMBO J, 1999, 18 (17): 4591 -4596
  • 5Ataide S F, lbba M. Small molecules: big players in the evolution of protein synthesis. ACS Chem Biol, 2006, 1 (5): 285-297
  • 6Neupert W, Herrmann J M. Translocation of proteins into mitochondrioa. Annu Rev Biochem, 2007, 76:723-749
  • 7Florentz C, Sohm B, Tryoen-Toth P, et al. Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci, 2003, 60 (7): 1356- 1375
  • 8Hao R, Zhao M W, Hao Z X, et al. A T-stem slip in human mitochondrial tRNALeu(CUN) governs its charging capacity. Nucleic Acids Res, 2005, 33 (11): 3606-3613
  • 9Edvardson S, Shaag A, Kolesnikova O, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet, 2007, 81:851 -862
  • 10Cartegni L, Wang J, Zhu Z, et al. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res, 2003, 31 (13): 3568-3571

同被引文献81

  • 1王恩多.哺乳动物氨基酰-tRNA合成酶的研究[J].生命科学,2006,18(3):209-213. 被引量:2
  • 2Andreoli C, Prokisch H, Hortnagel K, Mueller JC, Munsterkotter M, Scharfe C, Meitinger T. MitoP2, an integrated database on mitochondrial proteins in yeast and man. Nucleic Acids Res, 2004, 32: D459-D462.
  • 3Hengartner MO. The biochemistry of apoptosis. Nature, 2000, 407(6805): 770-776.
  • 4Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet, 2005, 6(5): 389-402.
  • 5Eriani G, Delarue M, Poch O, Gangloff J, Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990, 347(6289): 203-206.
  • 6Curnow AW, Ibba M, Soll D. tRNA-dependent asparagine formation. Nature, 1996, 382(6592): 589-590.
  • 7Ibba M, Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem, 2000, 69: 617-650.
  • 8Brindefalk B, Viklund J, Larsson D, Thollesson M, Andersson SG. Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases. Mol Biol and Evol, 2007, 24(3): 743-756.
  • 9Chang PK, Dignam JD. Primary structure of alanyl-tRNA synthetase and the regulation of its mRNA levels in Bombyx mori. J Biol Chem, 1990, 265(34): 20898-20906.
  • 10Nada S, Chang PK, Dignam JD. Primary structure of the gene for glycyl-tRNA synthetase from Bombyx mori. J Biol Chem, 1993, 268(11): 7660-7667.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部