期刊文献+

基于Backbone的极值进化算法

Backbone based extremal evolutionary optimization
下载PDF
导出
摘要 由于变量的适应度最优与问题的目标函数最优无法达到一致,从而利用极值过程原则的局部搜索算法对TSP问题效果不好,而通过改变变量的适应度,使其与目标函数相关,就能够提高个体解的搜索能力。比较参数取不同值时个体解搜索到的目标函数,可以发现存在使个体解搜索性能最佳的参数取值,且与变量的变异方式无关,这就为参数设置提供了依据。但个体解接近最优解后改善缓慢,无法快速到达最优解,为此引入组合优化问题解的Backbone概念,在种群进入最优解域后固定解中的相同部分,从而保留解中包含的最优解的信息,在减小问题规模后继续进行优化,增强搜索能力,提高搜索性能。 Because of the inconsistence between optimal fitness of variables and optimal objective,local searching algorithm using extremal process rules is ineffective for Traveling Salesman Problem( TSP ).We change the definition of variables and make them related with the objective function,whlch enhances the searching capability of an individual solution.Through comparison of objectives with different parameter values of r,we found that there is the optimal value of r to get the best searching performance. This result provides rules for parameter setting and it is independent of mutation ways of variables.However,when an individual solution gets near to sub-optlma,the improvement of objective function is very slow and the solution cannot arrive at the optimum quickly.So we introduce the concept of backbone of combinatorial optimization solutions.While the colony comes in.to the optimal space engine,we fix the same parts in the solutions to reserve the best solution,and reduce the scale of real problem to solve to continue the optimization,which enhances the searching capability, and improve the searching performance.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第24期36-39,49,共5页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2006AA04A129~~
关键词 BACKBONE 极值过程 自组织临界模型 旅行商问题 Backbone extremal process self-organized criticality model Traveling Salesman Problem(TSP)
  • 相关文献

参考文献16

  • 1Paczuski M,Maslov S,Bak P.Avalanche dynamics in evolution, growth, and depinning models[J].Phys Rev E, 1996,53 : 414-443.
  • 2Bak P,Sneppen K.Punctuated equilibrium and criticality in a simple model of evolution[J].Phys Rev Lett, 1993,71 (24) : 4083,4086.
  • 3Boettcher S.Extremal optimization: heuristics via coevolutlonary avalanches[J].Computing in Science and Engineering,2000,2(6):75-82.
  • 4Boetteher S,Percus A G.Nature's way of optimizing[J].Artificial Intelligence, 2000,119( 1/2 ) : 275-286.
  • 5Boettcher S,Percus A G.Optimization with extremal dynamics[J]. Phys Rev Lett,2001,86:5211-5214.
  • 6Meshoul S,Batouche M.Robust point correspondence for image regi-stration using optimization with extremal dynamics[C]//Proceeding of 24th D AGM Symposium on Pattern Recognition:Zurich, Switzerland,September 16-18,2002:330-337.
  • 7Svenson P.Extremal optimization for sensor report pre-processing [DB/OL].arXiv: cs.AI/0411072.
  • 8Boettcher S.Extremal optimization of graph partitioning at the percolation threshold[J].Journal of Physics A, 1999,32: 5201-5211.
  • 9Duch J,Arenas A.Community detection in complex networks using extremal optimization[J].Phys Rev E, 2005,72 (2).
  • 10Sousa F L,Ramos F M.Function optimization using extremal dynamics[C]//Proceedings of the 4th International Conference on Inverse Problems in Engineering,Rio de Janeiro,Brazil, 2002.

二级参考文献11

  • 1周明 孙树栋.遗传算法原理及应用[M].西安:西安交通大学出版社,2000..
  • 2周爱民 康立山 演化解.求解多目标优化问题一种新解定义[J].计算机学报,.
  • 3覃俊.一种新的求解tsp问题的遗传算法[J].中南民族大学学报自科版,1999,.
  • 4郭涛.[D].武汉大学,2000.
  • 5Lishan Kang,Pu Liu.Asynchronous Parallel Algorithm For Constrained Optimization[J].Wuhan University Journal of Natural Sciences,1999-05.
  • 6Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics - Part B,1996,26(1):29-41.
  • 7Dorigo M, Gambardella L. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
  • 8Bullnheimer B, Kotsis G, Strauss C. Parallelization strategies for the ant system[R]. Vienna: University of Vienna,1997.
  • 9Thomas Stützle, Holger Hoos. MAX-MIN ant system and local search for the traveling salesman problem[A]. Proc IEEE Int Conf on Evolutionary Computation (ICEC′97)[C]. Indianapolis,1997.309-314.
  • 10康立山 谢云 尤失勇.非数值并行算法(一)[M].北京:科学出版社,1998..

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部