摘要
运用元胞自动机理论,针对无向图剖分优化问题进行了分析和建模,提出了一种元胞自动机模型以及基于该模型的无向图剖分优化算法。在该元胞自动机模型中,元胞对应于无向图中的结点,元胞的邻居对应于邻接结点,元胞空间对应于无向图中的结点集,元胞的状态对应于所在的结点子集。实验及分析表明该算法不仅能找到无向图的近似最优剖分,而且有效地降低了空间复杂度和时间复杂度。
According to the analysis of min-cut partitioning problem,we give a Cellular Automata (CA) model for this problem by applying the cellular automata theory and propose a min-cut optimization algorithm based on this model for bisecting graph.In the model,the vertex of graph can be considered as the cell and the adjacent vertices have been denoted by the CA-neighborhoods.Furthermore,the CA-space denotes the set of vertices and each cell's state represents the Subset of vertices which the corresponded vertex belongs at.The experiment and the analysis show that our algorithm not only can find good approximate partitioning of undirected graph,moreover can reduce the time complexity and the space complexity effectively.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第24期46-49,共4页
Computer Engineering and Applications
基金
科技部国际合作项目(NoCB7-2-01)
江西省教育规划资助项目(No04BY453)
关键词
元胞自动机
无向图
优化算法
复杂度
cellular automata
undirected graph
optimization algorithm
complexity