期刊文献+

聚类和关联规则挖掘在基因表达数据分析中的应用研究

Applying clustering and association rule mining for analyzing gene expression data
下载PDF
导出
摘要 随着DNA微阵列技术的广泛应用,产生了海量基因表达数据,如何利用这些数据研究基因间的调控关系成为当前生物信息学的一个研究热点。关联规则挖掘是数据挖掘领域的一个重要技术,然而直接对基因表达数据进行关联规则挖掘存在两个问题:一是时间和空间复杂度过高;二是获得的规则仅定性表示基因间的调控关系,无法提供关于调控关系强度的信息。本文利用聚类实现数据降维,然后将基因表达水平离散化为七个状态,最后关联分析每个聚类中的基因表达数据。实验结果表明本文的分析方法是有效的。 With general application of DNA microarray technology, huge gene expression data are produced. Identifying the regulation relationship among genes from gene expression data is an important research topic in the bioinformaties field. Association rule mining is such a popular technology in data mining field. Yet when directly applying such method to gene expression data,there exist two problems,one is the excessive cost of the time and space,and the other is that the rules obtained only show relationships among genes roughly and can' t give any clues about the strength of such relationships. In this paper,an analyzing method is presented. Firstly Clustering is used to reduce the dimension of data, then discretizing the gene expression data using seven intervals that can represent each gene with different magnitudes of expression change, at last mining association rules from the gene expression data. The experiment results show that such analyzing method is effective.
出处 《北京生物医学工程》 2008年第4期371-375,共5页 Beijing Biomedical Engineering
基金 安徽省自然科学基金(050420204) 安徽省高校学科拔尖人才基金(05025102) 安徽省高校青年教师基金(2006jql038)资助
关键词 生物信息学 基因表达数据 数据挖掘 聚类 关联规则 bioinformatics gene expression data data mining clustering association rule
  • 相关文献

参考文献17

  • 1Schena M, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995,270 (5235) :467 -470.
  • 2Alan Kimmel BO. DNA芯片(B辑):数据和分析.北京:科学出版社,2007
  • 3Eisen MB. Microarray and Related Data for Analyses. http://rana. Ibl. gov/EisenData. htm.
  • 4Agrawal R, lmielinski T,Swaml A. Mining association rules between sets of items in large databases. Proc of the 1993 ACM SIGMOD International Conference on Management of Data. NY, New York, USA:ACM Press, 1993:207 -216.
  • 5Agrawal R, Srikant R. Fast algorithms for mining association rules,in In: Proc of the 1994 InternationabConference on VLDB. Morgan Kaufmann Publishers: San Francisco, 1994:487- 499.
  • 6Tan Pang-ning MS, Vipin Kumar.数据挖掘导论.北京:人民邮电出版社,2006
  • 7Creighton C,Hanash S. Mining gene expression databases for association rules. Bioinforntatics,2003,19(1) : 79 -86.
  • 8Carmona-Saez P, et al. Integrated analysis of gene expression by association rules discovery. BMC Bioinformatics,2006,7 (54) : I - 16.
  • 9Pan F,et al. Carpenter: finding closed patterns in long biological datasets,in In Proc of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. NY, New York, USA: ACM Press,2003:637 - 642.
  • 10Cong G,et al. FARMER: finding interesting rule groups in microarray datasets. In proc of ACM SIGMOD lnt Conf on Management of Data. NY,New York, USA:ACM Press,2004:143 - 154.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部