摘要
利用变截面摆线行星啮合副实现无侧隙啮合的新型双圆盘摆线轮行星传动装置。根据微分几何和齿轮啮合原理,采用运动学法建立了平行轴内啮合行星传动的齿廓啮合方程,给出了已知内齿轮齿廓条件下与之共轭的行星轮齿廓方程的一般表达式。论证了变截面摆线行星传动针齿齿廓半径沿轴向变化时所对应的系列短幅摆线互为等距线。针对变截面摆线传动,给出了针齿半径沿轴向线性变化的锥形摆线轮和非线性变化的鼓形行星轮的设计实例。
We present a double-disc cycloid gear mechanism which employs variable cross section cycloid gear pairs to realize zero backlash. According to differential geometry and theory of gearing, we first established the meshing equation of variable cross section cycloid drive. Then, we derived the general equation of spatial conjugate surfaces of planet gear which is engaged with the inner gear whose tooth profile's equation is already known. It is demonstrated that a series of epicycloids are equidistant curves while the radiuses of pins vary along their axes. Design examples of linear variable cross section cycloid gears as conic cycloid gear and nonlinear ones as drum cycloid gear are given, and the numerical result is presented to demonstrate the validity of the equations.
出处
《机械科学与技术》
CSCD
北大核心
2008年第8期1025-1030,共6页
Mechanical Science and Technology for Aerospace Engineering
基金
国家自然科学基金项目(50375159)和新世纪优秀人才计划项目资助
关键词
双圆盘摆线轮行星传动
变截面行星轮
等距线
锥形摆线轮
鼓形行星轮
double-disc cycloid gear
variable cross section cycloid gear
equidistant curve
conic cycloid gear
drum cycloid gear