期刊文献+

LQ理论在参数随机的证券投资组合套期保值中的应用 被引量:2

The Applications of LQ Theory to Hedging Security Portfolios with Random Parameters
原文传递
导出
摘要 在连续时间情形、不考虑交易费用、市场无摩擦假设,以及套期保值准则等条件下,考察了参数随机的证券投资组合中加入未定权益类衍生品形成的最优动态投资策略(u*(t)),并给出了该投资组合的最优模型所对应的黎卡提(Riccati)方程的解的存在性证明. Under the assumption of free transaction cost and of no frictional market, This article focuses on optimal dynamic investment strategy (u· (t)) of one kind of investment portfolio with the rule of hedging under the continuous time if fix equity derivatives were added to security portfolio with random coefficient. Then, the article has proved the existence of solution of riccati equation.
作者 袁军 杨成
出处 《数学的实践与认识》 CSCD 北大核心 2008年第16期33-37,共5页 Mathematics in Practice and Theory
关键词 LQ理论 最优投资策略 套期保值 黎卡提方程 LQ theory the control of optimal portfolio hedging riccati equation
  • 相关文献

参考文献11

  • 1Zhou X Y, Li D. Continous-time mean-variance portfolio selection: A stochastic LQ framework[J]. Appl Math Optim, 2000,42: 19-33.
  • 2刘海龙,吴冲锋.基于鲁棒控制的期权套期保值策略[J].控制与决策,2001,16(6):974-976. 被引量:9
  • 3Andrew E B Lim, Zhou X Y. Mean-variance portfolio selection with random parameters in a complete market[J]. Mat hematices of Operations Research, 2002,27 ( 1 ) : 101-120.
  • 4刘宣会,胡思建,侯建荣.证券组合优化模型的随机LQ控制框架[J].西安电子科技大学学报,2004,31(2):304-309. 被引量:6
  • 5王波,孟庆欣.有交易费的美式未定权益的套期保值(英文)[J].复旦学报(自然科学版),2005,44(3):403-410. 被引量:3
  • 6Markowilz H. Porlfolio seleclion[J]. J Finance, 1952,7 : 77-91.
  • 7Markowitz. Portfolio Selection: Efficient Diversification of Investment[M]. John Wiley & Sons, New York, 1959.
  • 8Merton R C. An analytic derivation of the efficient frontier[J]. J Finace Quant Anal, 1972,7:1851-1872.
  • 9Li D, Ng W L. Optimal dynamic portfolio selection: Multi-period mean-variance formulation[J]. Math Finance, 2000,10:387-406.
  • 10KJ奥斯特隆姆.随机控制理论导论[M].科学出版社,1983.

二级参考文献14

  • 1Wonham W M. On a Matrix Riccati Equation of Stochastic Control[J]. SIAM.I, Contr, 1968, 6(4): 312-326.
  • 2Bonsouasan A. Stochastic Control of Perils.fly Obserked Systems Cambridge[M]. UK: Cambridge Unlv Press, 1992.
  • 3Davis M H A. Linear Estimation and Stochastic Control London[M]. UK: Chaopman and Hall, 1977.
  • 4Chen S P, Li X J, Zhou X Y. Stochastic Linear Quadratic Regulators with Indefinite Control Weigh Consts[J]. SIAMJ Control Optim,1998, 36(8): 1685-1702.
  • 5Wu Hanxhong, Zhou Xunyu. Characterizing All Optimal Controls for an Indefinite Stochastic Linear Quadratic Control Problem[J]. IEEE Tmna on AutomAtic Control, 2002, 47(7) : 1119-11220.
  • 6Zhou X Y, Li D. Continuous-tlme Mean-variance Portfolio Selection: a Stochastic LQ Framework[J]. Appl Math Optim, 2000, 42(1) :19-33.
  • 7LIM A E B, Zhou Xunyu. Mean-varlance Portforio Selection with Random Parameters in a Complete Market[J]. Mathematics of Operations Research, 2002, 27(1) : 101-120.
  • 8Karatzas I,Kou S.Hedging American contingent claims with constrained portfolios[J].Finance Stochast,1998,2:215-258.
  • 9Bensoussan A,Julien H.On the pricing of contingent claims with frictions[J].Math Finance,2000,10:89-108.
  • 10Meyer P A.Un cours sur les integrales stochastiques[M].Berlin-Heidelberg:Spinger,1976.245-398.

共引文献12

同被引文献12

  • 1王波,孟庆欣.有交易费的美式未定权益的套期保值(英文)[J].复旦学报(自然科学版),2005,44(3):403-410. 被引量:3
  • 2Markowitz H. Portfolio selection of Finance[J].Journal of Fi- nance, 1952,7: 77-91.
  • 3Merton R C.Portfolio selection under uncertainty the continu- ous case[J].Economic Statist, 1969,51:247-257.
  • 4Merton R C.Optimal consumption and portfolio rules in a continuous time model [J].Economic Theory, 1971, 3: 373-413.
  • 5Winkler R L.A Bayesian Model for Portfolio Selection and Revision[J].Journal of Finance, 1975,30 : 179-192.
  • 6Merton R C.An analytic derivation of the efficient frontier[J]. Journal of Finance and Quantitative Analysis, 1972, 9: 1851-1872.
  • 7Andrew E B, Lim, Zhou X Y. Mean-variance portfolio selec- tion with random parameters inacomplete emarket[J]. Mathe- matices of Operations Research, 2002,27 ( 1 ) : 101-120.
  • 8LAMBERTON D, PHAM H, SCHWEIZER M. Local risk - min- imization under transaction costs [ J ]. Mathematics of Operations Research, 1998, 23(3): 585-612.
  • 9LIM A E B, ZHOU X Y. Mean - variance portfolio selection with random parameters inacomplete emarket[ Jl. Mathematics of Operations Research, 2002, 27(1 ) : 101 - 120.
  • 10LIM A E B. Quadratic hedging and mean - variance portfolio se- lection with random parameters in an incomplete market [ J ]. Mathematics of Operations Research, 2004, 29( 1 ) : 132 -161.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部