期刊文献+

非自治单种群时滞Kolmogorov系统的持续性和灭绝性 被引量:1

Persistence and Extinction in Nonautonomous Single-species Kolmogorov System with Delay
原文传递
导出
摘要 研究非自治单种群时滞Kolmogorov系统,给出了该系统中种群持续和灭绝的充分条件,这些结果与相应的非自治单种群Kolmogorov系统的有关结果相似. A nonautonomous single-species Kolmogorov system with delay is considered in this paper. Sufficient conditions are given for persistence and extinction of species in this system, these results resemble those of the corresponding nonautonomous single-species Kolmogorov system.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第16期92-96,共5页 Mathematics in Practice and Theory
基金 鲁东大学创新团队建设项目资助
关键词 非自治Kolmogorov系统 时滞 持续性 灭绝性 nonautonomous Kolmogorov system delay persistence extinction
  • 相关文献

参考文献3

  • 1Vance R R, Coddington E A. A nonautonomous model of population growth[J]. J Math Biol, 1989,27:491-506.
  • 2Ray Redheffer. Generalized monotonicity,integral conditions and partial survival[J]. J Math Biol, 2000,40s 295- 320.
  • 3Hale J. Theory of Functional Differential Equations[M]. New York Heidelberg Berlin, Pringer-Berlag,1977.

同被引文献5

  • 1Vance R R, Coddington E A. A nonautonomous model of population growth[J]. J Math Biol,1989,27:491-506.
  • 2Redheffer R. Generalized monotonieity, integral conditions and partial survival[J]. J Math Biol, 2000,40: 295-320.
  • 3Hale J. Theory of Functional Differential Equations[M]. New York Heidelberg Berlin, Pringer-Berlag, 1977.
  • 4Redheffer R. Increasing functions[J].Aequations Mathematicae, 1981,22 : 119-133.
  • 5Redheffer R. Nonautonomous Lotka-Volterra systems I[J].J Diff Eqs, 1996,127:519-541.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部