期刊文献+

一类具有一般非线性接触率和隔离率的染病年龄结构SIRS传染病模型研究 被引量:1

The Study on an Infection-Age Dependent SIRS Epidemic Model with General Nonlinear Contact Rate and Screening
原文传递
导出
摘要 首先,建立了一类具有一般非线性接触率及隔离函数的染病年龄结构SIRS传染病模型.然后综合运用Bellman-Grownall引理、不动点定理及解的延拓方法讨论模型全局非负解的存在性及惟一性. An SIRS epidemic model with general nonlinear contact rate, general screening function and infection-age dependence is first formulated. Subsequntly, by the Bellman- Gronwall lemma, the fixed point theorem and the extension method, the existence and uniqueness of the globally non-negative solultion are discussed.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第16期97-103,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10671166)
关键词 传染病模型 隔离 接触率 染病年龄结构 epidemic model screening contact rate infection-Age dependence
  • 相关文献

参考文献7

  • 1Thieme HR, Castillo-Chavez C. How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? [J]. SIAM J ApplMath,1993,53(5):1447-1479.
  • 2Kim MY, Milner FA. A mathematical model of epidemics with screening and variable infectivity[J]. Math Comput Modelling, 1995,21 (7): 29-42.
  • 3Kribs-Zaleta CM, Martcheva M. Vaccination strategies and backward bifurcation in an age-since-infection structured model[J]. Math Biosci, 2002,177/178(2) : 317-332.
  • 4Inaba H, Sekine H. A mathematical model for Chagas disease with infection-age-dependent infectivity[J]. Math Biosci, 2004,190 (4) : 39-69.
  • 5Li J, Zhou YC, Ma ZZ, et al. Epidemiological models for mutating pathogens[J]. SIAM J Appl Math, 2004, 65(1):1-23.
  • 6Zhang ZH, Peng JG. A SIRS epidemic model with infection-age dependence[J]. J Math Anal Appl, 2007,331(2) 1396-1414.
  • 7Mena-Lorca J, Hethcote HW. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(7) : 693-716.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部