期刊文献+

最小二乘支持向量机用于常压塔汽油干点的软测量 被引量:5

Gasoline endpoint soft-sensing of crude column based on least squares support vector machine
原文传递
导出
摘要 最小二乘支持向量机(least squares support vector machine,LSSVM)为一种遵循结构风险最小化原则的核函数学习机器,其训练仅需求解一个线性方程组,且超参数较标准支持向量机更少。由于其实现简单且预测效果良好,近年来在化学、化工领域的应用日益广泛。本文研究了基于LSSVM的软测量建模过程中的数据预处理和优选超参数等问题。并将其应用于常压塔塔顶汽油干点的软测量建模。计算结果表明,其预测精度能够满足生产实际要求,是一种简单有效的非线性软测量建模工具。 Least squares support vector machine (LSSVM) is a kernel learning machine which obeys structural risk minimization (SRM) during training, which has less hyper parameters compared with standard support vector machine and its training is a linear equations set solving problem. Because of its simplicity and good prediction precision, LSSVM is applied widely in chemistry and chemical engineering field. The data pre-processing and hyper parameters selection problems for LSSVM are researched here, and soft sensing for gasoline end point of atmospheric column is used to test the performance of LSSVM soft senor. The result showed that the prediction performance of LSSVM can satisfy the manufacturing request and it' s an effective tool for nonlinear soft sensing.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第8期928-930,共3页 Computers and Applied Chemistry
基金 重质油加工国家重点实验室开放基金 青岛科技大学科研基金
关键词 软测量 最小二乘支持向量机 常压塔 汽油干点 soft sensing, least squares support vector machine (LSSVM), atmospheric column, gasoline end point
  • 相关文献

参考文献2

二级参考文献10

  • 1陈文杰,王晶.支持向量机在工业过程中的应用[J].计算机与应用化学,2005,22(3):195-200. 被引量:9
  • 2Yan W W, Shao H H, Wang X F. Soft Sensing Modeling Based on Support Vector Machine and Bayesian Model Selection[J]. Computers and Chemical Engineering, 2004,28 (10): 1489-1498.
  • 3Suykens J A K. Nonlinear Modeling and Support Vector Machine [ A ]. In Proc of the IEEE Instrumentation and Measurement Technology Conf[C ].Budapest: Hungary, 2001: 287-294.
  • 4Mejdell T, Skogestad S. Output Estimation Using Multiple Secondary Measurements: High-purity Distillation[J]. Process Systems Engineering , 1993, 9(10):1641-1653.
  • 5Yang S H,Wang X Z, Mcgreavy C, et al. Soft Sensor Based Predictive Control of Industrial Fluid Catalytic Cracking Processes [ J ]. Institution of Chemical Engineers Trans IchemE, 1998, 76(5): 499-508.
  • 6Cortes C, Vapnik V. Support-vector Networks[J].Machine Learning, 1995, 20(1) :273-297.
  • 7Vapnik V N. The Nature of Statistical Learning Theory [M]. 1st ed. New York: Springer-Verlag,1995.
  • 8张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 9阎威武,朱宏栋,邵惠鹤.基于最小二乘支持向量机的软测量建模[J].系统仿真学报,2003,15(10):1494-1496. 被引量:102
  • 10常玉清,王小刚,王福利.PCA-DRBFN模型在精馏塔精苯干点估计中的应用[J].东北大学学报(自然科学版),2004,25(2):103-105. 被引量:6

共引文献33

同被引文献55

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部