期刊文献+

基于D-S理论的入侵检测系统 被引量:2

D-S theory-based intrusion detection system
下载PDF
导出
摘要 单一的检测方法很难对所有的入侵获得很好的检测结果。所以,怎样将多种安全方法结合起来,为网络提供更加有效的安全保护,已经成为当前安全领域的研究热点之一。提出了一种基于数据融合的入侵检测系统,并将证据理论引入到网络安全中的入侵检测领域。该系统能够有效地解决单一检测算法无法对所有入侵都有很好检测效果的缺陷,并且相对于单一检测方法系统具有更好的可扩展性和鲁棒性。 It is hard for single security measure to attain favourable detection result. Therefore, how to combine muhiplicate security measures to provide the network system with more effective protection becomes one of the hot spots in current research. A data fusion based intrusion detection system was proposed in this paper. Muhiplicate detection measures were "fused" in this system to solve the problem that single measures can not obtain good result for all intrusions, and the system has better scalabilities and robustness.
作者 赵晓峰
出处 《计算机应用》 CSCD 北大核心 2008年第9期2255-2258,共4页 journal of Computer Applications
关键词 入侵检测 证据理论 数据融合 intrusion detection evidence theory data fusion
  • 相关文献

参考文献7

  • 1KLEIN LA. A boolean algebra approach to multiple sensor voting fusion[ J]. IEEE transactions on aerospace and electronic systems, 2004, 29( 1 ) : 317 - 327.
  • 2CHAN A P F, NG W W Y, YEUNG D S, et al. Multiple classifier system with feature grouping for intrusion detection: Mutual information approach[ C]// Proceeding of the 9th international Conference on Knowledge-Based Intelligent Information & Engineering Systems. Melbourne, Australia: [ s. n. ], 2005:215 -221.
  • 3NG W W Y, CHAN A P F, YEUNG D S, et al. Quantitative study on the generalization error of multiple classifier systems[ C]// Proceeding of International Conference on Systems, Man and Cybernetics. Hawaii, USA: IEEE Press, 2005:405 -416.
  • 4SHAFER G. A mathematical theory of evidence[ M]. Princeton: Princeton University Press, 1976.
  • 5KDD Cup 1999 Data[ EB/OL]. [ 2008 - 01 - 01 ]. http://www.ics. uei. edu/-kdd/databases/kddeup99/kddeup99.html.
  • 6赵晓峰,叶震.基于加权多随机决策树的入侵检测模型[J].计算机应用,2007,27(5):1041-1043. 被引量:6
  • 7GRUNDEL D, MURPHEY R, PARALOS P. Theory and algorithms for cooperative systems[ M]. Singapore: World Scientific, 2005:239 -310.

二级参考文献12

  • 1HANJW KAMBEM 范明 孟晓峰 译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.237-251.
  • 2FREUND Y.Boosting a Weak Learning Algorithm by Majority[J].Information and Computation,1995,121 (2):256-285.
  • 3FREUND Y,SCHAPIRE RE.Experiments with a New Boosting Algorithm[A].Proceedings of the International Conference in Machine Learning[C].San Francisco,CA,1996.148-156.
  • 4BREIMAN L.Bagging Predictors[J].Machine Learning,1996,24(2):123-140.
  • 5AMIT Y,GEMAN D.Shape quantization and recognition with randomized trees[J].Neural Computation,1997,9(7):1545-1588.
  • 6BREIMAN L.Randomizing outputs to increase prediction accuracy[J].Machine Learning,2000,40(3):229-242.
  • 7FAN W,WANG HX,YU PS,et al.Is random model better on its accuracy and efficiency[A].Proceedings of Third IEEE International Conference on Data Mining (ICDM-2003)[C].2003.
  • 8BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5 -32.
  • 9HU KY,LU YC,SHI CY.Feature ranking in rough sets[J].AI Communications,2003,16(1):41 -50.
  • 10FAN W,GREENGRASS E,MCCLOSKEY J,et al.Effective Estimation of Posterior Probabilities:Explaining the Accuracy of Randomized Decision Tree Approaches[A].Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM'05)[C].2005.154-161.

共引文献5

同被引文献23

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2肖云,韩崇昭,郑庆华,王清.一种基于多分类支持向量机的网络入侵检测方法[J].西安交通大学学报,2005,39(6):562-565. 被引量:13
  • 3诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 4Staniford S, Hoagland J A, McAlemey J M.Practical automated detection of stealthy portscans[J].Journal of Computer Security, 2002,10(1): 105-136.
  • 5Bridges S M,Vaughn R M.Fuzzy data mining and genetic algorithms applied to intrusion detection[C]//Proceedings 23rd National Information Systems Security Conference,Baltimore,MD,2000: 13-31.
  • 6Sung A H, Mukkamala S.Identify important features for intrusion detection using support vector machines and neural networks[C]// IEEE Proceedings of the 2003 Symposium on Application and the Internet, 2003 : 209-216.
  • 7Zhu Gengrning, Liao Junguo.Research of intrusion detection based on support vector machine[C]//Advanced Computer Theory and Engineering, 2008 : 434-438.
  • 8Giorgio G, Fabio R, Luca D.Fusion of multiple classifiers for intrusion detection in computer networks[J].Pattern Recognition Letters, 2003,24:1795-1803.
  • 9Ciza T,Narayanaswamy B.Advanced sensor fusion technique for enhanced intrusion detection[C]//Proceedings of IEEE International Conference on Intelligence and Security Informatics,2008: 173-178.
  • 10Ciza T, Balakrishnan N.Performance enhancement of intrusion detection systems using advances in sensor fusion[C]//Proceedings of the llth International Conference on Information Fusion, 2008 : 1-7.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部