期刊文献+

粒子群优化算法在配送中心连续性选址中的应用 被引量:14

Application of particle swarm optimization to continuous location of distribution center
下载PDF
导出
摘要 在用常规算法对配送中心进行连续性选址时,很容易陷入局部最优解。针对这一问题,引入ALA方法的思想,提出了解决此类模型的粒子群优化算法。该算法首先利用ALA方法的局部寻优能力对初始粒子进行优化,然后利用粒子群优化算法进行全局寻优。通过实例分析表明,该算法能很好地处理物流配送中心的连续选址问题,为决策者提供一种有效的优化工具。 The local optimal solution is often got when general algorithm was applied to solve continuous location of distribution center. To solve the problem, Alert Location - Allocation (ALA) algorithm to construct hybrid particle swarm optimization was cited in this paper. The computing result of the algorithm is nearer to the global optimal solution by combining local search of ALA algorithm and global optimization of particle swarm optimization. An example demonstrates that hybrid particle swarm optimization can solve the problem of continuous location of logistics distribution center and provides an effective decision tool for decision-maker.
作者 郜振华
出处 《计算机应用》 CSCD 北大核心 2008年第9期2401-2403,共3页 journal of Computer Applications
关键词 物流 选址 粒子群优化算法 配送中心 logistics location Particle Swarm Optimization (PSO) distribution center
  • 相关文献

参考文献8

二级参考文献24

  • 1秦寿康.最优化理论与方法[M].北京:电子工业出版社,1986..
  • 2[2]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C]. Perth, 1995. 1942-1948.
  • 3[3]Rainer Storn, Kenneth Price. Different evolution--A simple and efficient heuristic for global optimization over continuous space[J]. J of Global Optimization, 1997,(11): 341-359.
  • 4[5]Wang Tao. Global Optimization for Constrained Nonlinear Programming[M]. Doctoral Dissertation: University of Illinois at Urbana-Champaign, 2001.
  • 5[6]Deb K, Agrawal S. A niched-penalty approach for constraint handling in genetic algorithms[A]. Proc of the ICANNGA-99[C]. Portoroz, 1999. 234-239.
  • 6[7]Keane A J. Experiences with optimizers in structural design[A]. Proc of the Conf on Adaptive Computing in Engineering Design and Control 94[C]. Plymouth, 1994.14-27.
  • 7[8]Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation,1996,4(1):1-32.
  • 8[9]Michalewicz Z,Eaguvel S, et al. The spirit of evolutionary algorithms[J]. J of Computing and Information Technology,1999,7(1): 1-18.
  • 9[11]Schoenauer M,Michalewicz Z. Boundary operators for constrained optimization problems[A]. Proc of the 7th Int Conf on Genetic Algorithms[C]. CA: Morgan Kaufman Publishers,1997.322-329.
  • 10Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6): 39-42.

共引文献157

同被引文献124

引证文献14

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部