期刊文献+

参照解约束下数字曲线多边形逼近的PSO算法

A PSO algorithm for polygonal approximation of digital curves restricted by solution of reference
下载PDF
导出
摘要 提出了一种参照解约束下的数字曲线多边形逼近的PSO求解算法.该算法将参照解多边形各顶点与PSO求解中间解对应顶点的误差和及方差作为误差测度,将其与现有文献的PSO算法的误差测度进行加权组合形成新的适应度函数.采取调整两个权重系数来灵活控制参照解的约束强度,以满足各种不同的具体要求.通过实例验证表明了该算法的有效性. A PSO algorithm for polygonal approximation of digital curves restricted by the solution of reference is proposed. The algorithm uses the variance and sum of errors from each vertex of the reference solution polygon and corresponding vertices of the intermediate solution which is solved by PSO algorithm as the measure of errors, bringing about a new fitness function which is weighted combination between this measure of errors and the existing PSO algorithm ' s, controlling the binding strength of reference solution through adjusting the two weighted factors, to satisfy the variety of specific requirements. The validity of this algorithm has been proved through examples.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2008年第4期131-134,共4页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:60474077) 湖北省数字化纺织装备重点实验室开放基金(编号:DTL200712)
关键词 数字曲线 多边形逼近 参照解 PSO算法 digital curves polygonal approximation solution of reference PSO algorithm.
  • 相关文献

参考文献15

  • 1Yin Peng-Yeng. A discrete particle swarm algorithm for optimal polygonal approximation of digital curves [J]. Journal of Visual Communication & Image Representation, 2004,15 (2):241-260.
  • 2Jack Sklansky, Victor Gonzalez. Fast polygonal approximation of digitized curves [J]. Pattern Recognition, 1980,12(5) :327-331.
  • 3Yoshisuke Kurozumi, Wayne A Davis. Polygonal approximation by the minimax method [ J ] . Computer Graphics and Image Processing, 1982, 19(3): 248- 264.
  • 4Bimal Kumar Ray, Kumar S Ray. A non-parametric sequential method for polygonal approximation of digital curves [J].Pattern Recognition Letters, 1994,15 (2) :161-167.
  • 5Leu Jia-Guu, Chen Limin. Polygonal approximation of 2-D shapes through boundary merging [J]. Pattern Recognition Letters, 1988,7(4) : 231-238.
  • 6Bimal Kumar Ray, Kumar S Ray. A new split-and- merge technique for polygonal approximation of chain coded curves [J]. Pattern Recognition Letters, 1995,16(2) : 161-169.
  • 7Teh Cho-Huak, Chin Roland T. On the detection of dominant points on digital curves [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(8) :859-872.
  • 8Wu Wen-Yen. An adaptive method for detecting dominant points [J]. Pattern Recognition, 2003,36 (10) :2231-2237.
  • 9Horng Ji-Hwei, Li Johnny T. An automatic and efficient dynamic programming algorithm for polygonal approximation of digital curves [J]. Pattern Recogni- tion Letters, 2002,23(1) :171-182.
  • 10Alexander Kolesnikov, Pasi Franti. Reduce&search dynamic programming for approximation of polygonal curves [J]. Pattern Recognition Letters, 2003, 24 (14) : 2243-2254.

二级参考文献17

  • 1Sklansky J, Chazin R L, Hansen B J. Minimum perimeter polygonal of digitized silhouettes[J]. IEEE Transactions on Computers, 1972, 21(3): 260~268
  • 2Sklansky J, Gonzalez V. Fast polygonal approximation of digitized curves[J]. Pattern Recognition, 1980, 12(5): 327~331
  • 3Pavlidis T. Polygonal approximation by Newton's method[J]. IEEE Transactions on Computers, 1977, 26(8): 801~807
  • 4Willimas C M. An efficient algorithm for the piecewise linear planar curves and lines[J]. Computer Graphics Image Process, 1981, 16(4): 370~381
  • 5Roberge J. A data reduction algorithm for planar curves[J]. Computer Graphics Image Process, 1985, 32(2): 168~195
  • 6Wall K, Danielsson P E. A fast sequential method for polygonal approximation of digitized curves[J]. Computer Graphics Image Process, 1984, 28(2): 220~227
  • 7Dunham J G. Optimum uniform piecewise linear approximation of planner curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(1): 67~75
  • 8Ray B K, Ray K S. Determination of optimal polygon from digital curves using L1 norm[J]. Pattern Recognition, 1993, 26(4): 505~509
  • 9Chung P C, Tsai C T, Chen E L, et al. Polygonal approximation using a competitive Hopfield neural network[J]. Pattern Recognition, 1994, 27(11): 1505~1512
  • 10Mitzias D A, Mertzios B G. Shape recognition with a neural classifier based on a fast polygonal approximation technique[J]. Pattern Recognition, 1994, 27(5): 627~636

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部