期刊文献+

一类含有时滞与扩散的捕食—追捕系统的持续生存 被引量:3

The uniform persistence of a predator-prey system with diffusion and yime delay
下载PDF
导出
摘要 运用比较定理和一些迭代技巧,讨论得到了一类含有时滞与扩散的捕食-追捕系统的持续生存。 By using comparison theorem and some iteration techniques, I investigate uniform persistence of a predator-prey system with diffusion and time delay.
作者 邵远夫
出处 《贵州师范大学学报(自然科学版)》 CAS 2008年第3期65-67,共3页 Journal of Guizhou Normal University:Natural Sciences
基金 贵州省科技基金资助项目(黔合科J字[2007]2007号) 贵州师范大学青年老师基金资助项目[2008]
关键词 比较定理 捕食-追捕系统 持续生存 扩散 时滞 comparison theorem predator-prey system persistence diffusion time delay
  • 相关文献

参考文献7

  • 1J. cui, L. chen. Permanence and extinction in logistic and Lotka-Volterra systems with diffusion [ J ]. J. Math. Anal. Appl. 2001, 258:512-535.
  • 2邵远夫.一类有脉冲的微分方程存在正周期解的充分条件.四川师范大学学报:自然科学版,.
  • 3R. Xu,Z. ma: The effect of dispersal on the permanence of a predator-prey system with time delay [ J ]. Nonlinear Analysis, 2008,9 : 354-369.
  • 4S. A. levin. Biomathematics [ M]. Berlin: Springer,2005.
  • 5王高雄.常微分方程[M].北京:高等教育出版社,2004.
  • 6F. chen. On a nonlinear nonantonomous predator-prey model with diffusion and distributed delay [ J ]. J. Comp. Appl. Math,2005, 180:33-49.
  • 7X. song, L. chen. Optimal harvesting and stability for a two-species competitive system with stage structure [ J ]. Math. Biosci ,2001,170 : 173-186.

共引文献6

同被引文献16

  • 1邱志鹏,俞军,邹云.周期Lotka-Volterra系统周期解的存在性[J].工程数学学报,2004,21(6):895-899. 被引量:1
  • 2Fan M. , Wang K. Global periodic solutions of a generalized n-species Gilpin-Ayala competition model[ J]. Comp. Math. Appl. , 2000, 40: 1141-1151.
  • 3Li Y. K. Positive periodic solutions of periodic neutral Lotka-Volterra system with state Dependent delays [ J ]. J. Math. Anal. Appl. ,2006,(8):63-66.
  • 4Li Y. K. , Lu L. H. , Zhu X. Y. Existence of periodic solutions in n-species food-chain system with impulsive[ J]. Nonlinear analysis, 2006, (7) : 414-431.
  • 5Deimling. Nonlinear Analysis [ M ] New York : Springer, 1985.
  • 6Jiang D. , Oregan D,Agarwal R. Optimal existence theory for single and multiple positive periodic solutions of functional differential equations [ J ]. Nonlinear Oscil, 2003, (6) :327-338.
  • 7MURRAY J D. Mathematical Biology [M]. New York: Springer Verlag, 1989.
  • 8CHEN Lan-sun. Mathematical Ecological Model and the Research Methods [M]. Beijing.. Scientific Press, 1988.
  • 9MENG Xian-zhang, WEI Jun-jie. Stability and Bifurcation of Mutual System with Time Delay [J]. Chaos, Solitons and Fractals, 2001, 21:729 740.
  • 10陈大学,周树清,刘兰初,龙玉花.具有阻尼项和分布时滞的二阶中立型泛函微分方程的振动性[J].西南师范大学学报(自然科学版),2007,32(5):22-26. 被引量:8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部