期刊文献+

基于视频分析的智能监控系统 被引量:5

Intelligent surveillant system based on video analysis
下载PDF
导出
摘要 智能监控是当前计算机视觉研究的热点领域之一。针对室内监控的具体特点,实现了一种基于视频分析的智能检测跟踪监控系统。利用基于统计模型的目标检测算法提取运动目标;然后结合Meanshift算法对目标进行粗跟踪;最后针对Meanshift算法无法实时改变跟踪窗大小的缺陷,提出边界力调整算法以自适应更新跟踪窗窗宽。并以DM642数字图像处理DSP为核心,设计并搭建了智能视频监控平台。实验表明,该系统可以实时有效地检测、跟踪室内运动目标。 Intelligent surveillance is one of the hot fields in computer vision.This paper presents an intelligent detecting and tracking surveillant system based on video analysis,which is suitable for indoor environment.Firstly,a statistical model-based detection algorithm is used to find moving object.Then,the moving object is roughly tracked using meanshift.Meanwhile,to improve the deficiency that the scale of meanshift is not changeable,an adaptive scale update algorithm based on boundary force is presented.Finally,an intelligent video surveillant platform is designed and constructed with DM642 as the core.The experimental resuits show that the system can detect and track the moving object in indoor scene rapidly and effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第25期6-8,42,共4页 Computer Engineering and Applications
基金 国家自然科学基金No30570473 重庆市信息产业发展基金No20051022~~
关键词 智能监控 DM642 MEANSHIFT intelligent surveillance DM642 Meanshift
  • 相关文献

参考文献4

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2Texas Instrument Co.TMS320DM642:Video/imaging fixed-point digital signal processor[EB/OL].(2007-01 ).http ://www.ti.com/lit/gprdtms320 dm642.
  • 3Comanicin D,Ramesh V,Meer P.Kernel-based object tracking[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5) :564-577.
  • 4Aach T,Kaup A,Mester R.Statistical model-based change detection in moving video[J].Signal Processing,1993,31(2): 165-180.

二级参考文献105

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献275

同被引文献30

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部