期刊文献+

一种基于模糊增益比例的决策树属性选择方法 被引量:1

One choosing method of decision tree based on fuzzy gain ratio
下载PDF
导出
摘要 节点属性的选择是决策树生成过程中的关键环节,以ID3和C4.5为代表的经典决策树算法中,树节点的选择是通过子集样本数计算信息增益或增益比例得到的。但是,对于连续性属性,由于离散化分割导致了子集边界元素在隶属关系上的模糊,使样本计算的方式存在了一定的不合理性,为解决这一问题,采用了模糊集理论并以模糊度的方式取代样本个数参与增益比例的计算,给出了一种获得决策树分类中不确定性尺度的可行途径。 The choosing of node attribute is the pivotal tache during the building process of decision tree.ID3 and C4.5 are the representations of classical decision tree arithmetic,in which tree node is chosen by computing the information gain or gain ratio on the basis of the number of subset.However,due to continuity attribute,dispersed partition result in the faintness of subjection of subset boundary element,which makes the method of sample computing illogical.Adopting fuzzy set theory and using the way of fuzzy gain ratio instead of the way of the number of sample participating in plus property computing,this paper presents one feasible method of uncertainty scale in gaining decision tree classification.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第25期146-148,154,共4页 Computer Engineering and Applications
关键词 决策树 模糊集 模糊增益比例 聚类 decision tree fuzzy set fuzzy gain ratio clustering
  • 相关文献

参考文献4

  • 1Chmielew Ski M R,Crzymala-Busse J W.Global discretization of attributes as preprocessing for machine learning[C]//Soft Computing:Rough Sets,Fuzzy Logic Neural Networks,Uncertainty,Management, Knowledge Discovery, Simulation Councils, CA : San Diego, 1995.
  • 2刘奕群,张敏,马少平.基于改进决策树算法的网络关键资源页面判定[J].软件学报,2005,16(11):1958-1966. 被引量:11
  • 3Han Jiawei.Data mining:concepts and techniques[M].北京:机械工业出版社,2006.
  • 4Quinlan J R.C4.5 Programs for Machine Leazning[M].CA,USA: Morgan Kaufmann, 1993.

二级参考文献16

  • 1洪家荣,丁明峰,李星原,王丽薇.一种新的决策树归纳学习算法[J].计算机学报,1995,18(6):470-474. 被引量:92
  • 2Amento B, Terveen L, Hill W. Does authority mean quality? Predicting expert quality ratings of Web documents. In: Belkin NJ,Ingwersen P, Leong MK, eds. SIGIR 2000: Proc. of the 23rd Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval 2000. New York: ACM Press, 2000. 296-303.
  • 3Davison BD. Topical locality in the Web. In: Belkin NJ, Ingwersen P, Leong MK, eds. SIGIR 2000: Proc. of the 23rd Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval 2000. New York: ACM Press, 2000. 272-279.
  • 4Bharat K, Henzinger M. Improved algorithms for topic distillation in a hyperlinked environment. In: Croft BW, Moffat A, van Rijsbergen CJ, Wilkinson R, Zobel J, eds. SIGIR'98: Proc. of the 21st Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM Press, 1998. 104-111.
  • 5Broder A. A taxonomy of Web search. SIGIR Forum, 2002,36(2):1-8.
  • 6Henzinger MR, Motwani R, Silverstein C. Challenges in Web search engines. In: Gottlob G, Walsh T, eds. IJCAI 2003, Proc. of the 18th Int'l Joint Conf. on Artificial Intelligence. San Francisco: Morgan Kanfmann Publishers, 2003. 1573-1579.
  • 7Kleinberg JM. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999,46(5):604-632.
  • 8Chakrabarti S, Dom B, Kumar R, Raghavan P, Rajagopalan S, Tomkins A. Experiments in topic distillation. In: Brown E, Smeaton A, eds. Proc. of the ACM SIGIR Workshop on Hypertext Information Retrieval. New York: ACM Press, 1998. 13-21.
  • 9Chakrabarti S, Joshi M, Tawde V, Bombay IIT. Enhanced topic distillation using text, markup, tags and hyperlinks. In: Croft BW,Harper D J, Kraft DH, Zobel J, eds. SIGIR 2001: Proc. of the 24th Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM Press, 2001. 208-216.
  • 10Mitchell TM. Machine Learning. New York: McGraw-Hill, 1997. 55-64.

共引文献10

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部