期刊文献+

基于相异度矩阵的混合属性数据流聚类算法 被引量:8

Novel algorithm for clustering heterogeneous data stream based on dissimilarity matrix
下载PDF
导出
摘要 数据流的聚类是数据流挖掘的一个重要问题。提出一种针对混合属性的数据流聚类算法,它采用相异度来代替普通的聚类距离,并将等价相异度矩阵引入聚类过程。基于真实数据集的实验表明该算法比基地同类算法具有更好的聚类性能。 Data stream clustering is an important issue in data stream mining.In this paper,a novel algorithm is presented for clustering data stream with heterogeneous attributes.It adopts dissimilarity instead of the common clustering distance,and an equivalent dissimilarity matrix is used in the clustering process.Then the empirical evidence of this algorithm's superiority over CluStream and HCluStream algorithms on the real data sets is given.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第25期149-151,共3页 Computer Engineering and Applications
关键词 数据流 相异度 聚类 混合属性 data stream dissimilarity cluster heterogeneous attributes
  • 相关文献

参考文献7

  • 1Guha S,Mishra N,Montwani R,et al.Clustering data streams[C]// Proc of IEEE Symposium on Foundations of Computer Science (FOCS'00), 2000: 71-80.
  • 2Guha S,Meyerson A,Mishra N,et al.Clustering data streams:Theory and practice[J].IEEE Transactions on Knowledge and Data Engineering, 2003,15 (3) : 515-528.
  • 3Aggarwal C ,Han J,Wang J,et al.A framework for clustering evolving data stream[C]//Proc of Int Conf on Very Large Data Bases (VLDB' 03 ), 2003 : 81-92.
  • 4杨春宇,周杰.一种混合属性数据流聚类算法[J].计算机学报,2007,30(8):1364-1371. 被引量:22
  • 5aHan J,Kamber M.Data Mining:concepts and techniques[M].2nd ed. [S.l.] : Morgan Kaufman, 2006: 386-397.
  • 6赵明清,蒋昌俊,陶树平.基于等价相异度矩阵的聚类[J].计算机科学,2004,31(7):183-184. 被引量:11
  • 7Aggarwal C,Han J,Wang J,et al.A framework for projected clustering of high dimensional data stream[C]//Proc of Int Conf on Very Large Data Bases(VLDB'04),2004: 852-863.

二级参考文献17

  • 1[1]区奕勤,张先迪编.模糊数学原理及应用.成都:成都电讯工程学院出版社,1989
  • 2[2]Han Jiawei,Kamber M著,范明,孟小峰译.数据挖掘一概念与技术.北京:机械工业出版社,2001
  • 3[3]de Sa,Marques J P著,吴逸飞译.模式识别-原理、方法及应用.北京:清华大学出版社,2002
  • 4[4]左孝凌,李为鑑编.离散数学.上海:上海科学技术文献出版社,
  • 5Muthukrishnan S.Data Streams:Algorithms and Applications.Hanover,MA,USA:Now Publishers Inc.,2005
  • 6Golab L,Ozsu M T.Issues in data stream management.SIGMOD Record,2003,32(2):5-14
  • 7Garofalakis M N,Gehrke J.Querying and mining data streams:You only get one look//Proceedings of the 28th International Conference on Very Large Data Bases.Hong Kong,China,2002:635-635
  • 8Gaber M M,Zaslavsky A B,Krishnaswamy S.Mining data streams:A review.SIGMOD Record,2005,34(2):18-26
  • 9Guha S,Meyerson A,Mishra N,Motwani R,O'Callaghan L.Clustering data streams:Theory and practice.IEEE Transactions on Knowledge and Data Engineering,2003,15(3):515-528
  • 10Aggarwal C C,Han Jia-Wei,Wang Jian-Yong,Yu P S.A framework for clustering evolving data streams//Proceedings of the 29th International Conference on Very Large Data Bases.Berlin,Germany,2003:81-92

共引文献31

同被引文献62

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部