摘要
数据流的聚类是数据流挖掘的一个重要问题。提出一种针对混合属性的数据流聚类算法,它采用相异度来代替普通的聚类距离,并将等价相异度矩阵引入聚类过程。基于真实数据集的实验表明该算法比基地同类算法具有更好的聚类性能。
Data stream clustering is an important issue in data stream mining.In this paper,a novel algorithm is presented for clustering data stream with heterogeneous attributes.It adopts dissimilarity instead of the common clustering distance,and an equivalent dissimilarity matrix is used in the clustering process.Then the empirical evidence of this algorithm's superiority over CluStream and HCluStream algorithms on the real data sets is given.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第25期149-151,共3页
Computer Engineering and Applications
关键词
数据流
相异度
聚类
混合属性
data stream
dissimilarity
cluster
heterogeneous attributes