期刊文献+

基于小波提升格式的织物疵点检测 被引量:2

Fabric defect detection based on wavelet lifting scheme
下载PDF
导出
摘要 为了满足织物疵点检测快速而准确的要求,提出了一种基于小波提升格式疵点检测的新方法。首先根据已知滤波器,通过提高消失矩阶次构造与织物纹理相匹配的小波。在此基础上,对构造小波的滤波器进行提升和对偶提升,来获得不同的提升算子和对偶提升算子,从而实现小波的提升分解。最后提取小波分解后的高频子图细节特征,通过与正常织物高频子图细节特征相比较,从而实现疵点检测。实验证明了该方法是可行有效的,检测准确率达到92.5%以上。 To fabric defect detection of rapidity and accuracy,a new method for defect detection based on wavelet lifting scheme is presented.Firstly,according to known the set of finite filters,the new wavelet with matching fabric texture properties is constructed by improving Vanishing Moments.Secondly,the set of construction wavelet filters are followed by lifting and dual lifting,and different lifting operators and dual lifting operators are obtained to wavelet decomposition.Lastly,the detail signal after wavelet decomposition is extracted,and it is compared with the detail signal of normal fabric to detect defect.The experimental result confirms that the proposed method is validity and feasibility,and the detection accuracy rate is over 92.5%.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第25期219-221,228,共4页 Computer Engineering and Applications
基金 西安市科技攻关资助项目(No.GG04039)
关键词 提升格式 小波构造 疵点检测 lifting scheme construction wavelet defect detection
  • 相关文献

参考文献4

  • 1Anagnostopoulos C,Vergados D,Kayafas E,et al.A computer vision approach for textile quality control[J].The Journal of Visualization and Computer Animation,2001,12( 1 ) :31-44.
  • 2Daubechies I,Sweldens W.Factoring wavelet transform into lifting steps[J].J Fourier Anal Comput Harmon Anal, 1996,3(2):186-200.
  • 3Tsai Du-Ming,Chiang Cheng-Huei.Automatic band selection for wavelet reconstruction in the application of detection[J].Image and Vision Computing,2003,21 (5) :413-431.
  • 4Ngan H Y T,Panga G K H,Yung S P,et al.Wavelet based methods on patterned fabric defect detection[J].Pattern Recognition,2005, 38(4) :559-578.

同被引文献26

  • 1刘万春,罗双华,朱玉文,谢世斌.基于聚类分析和支持向量机的布匹瑕疵分类方法[J].北京理工大学学报,2004,24(8):687-690. 被引量:6
  • 2NGAN H Y T, PANG G K H. Regularity analysis for patterned texture inspection [ J]. IEEE Transactions on Automation Science and Engineering, 2009, 6 ( 1 ) : 131 - 144.
  • 3NGAN H Y T, PANG G K H, YUNG N H C. Performance evaluation for motif-based patterned texture defect detection [Jl. IEEE Transactions on Automation Seienee and Engineering, 2010, 7( 1): 58-72.
  • 4LI Wenyu, XUE Wenliang, CHENG Longdi. Intelligent detection of defects of yarn-dyed fabrics by energy-based local binary patterns [ J 1. Textile Research Journal, 2012, 82(19) :1960 - 1972.
  • 5YOSHION Shimizu. Expert system to inspect fabric defects by pattern recognition [ J]. IEEE Transactions on Pattern Recognition, 1990, 46 ( 3 ) :460 - 469.
  • 6JAYASHREE V, SHAILA Subbaraman. Identification of twill grey fabric defects using DC suppress Fourier power spectrum sum features [ J]. Textile Research Journal, 2012, 82(14) :1485 - 1497.
  • 7MALEK Abdel Sanlam, DREAN Jean-yves, BIGUE Lauren, et al. Optimization of outomated online fabric inspection by fast Fourier transform and cross- correlation [J]. Textile Research Journal, 2013, 83(3) ,256 -268.
  • 8KOCH C, ULLMAN S. Shifts in selective visual attention: towards the underlying neural circuitry [ Jl. Hum Neurobiol, 1984,4(4) : 219 -227.
  • 9刘晓民.纹理研究及其应用综述[J].测控技术,2008,27(5):4-9. 被引量:19
  • 10管声启,石秀华.基于频域滤波的织物疵点检测[J].计算机应用,2008,28(10):2673-2675. 被引量:12

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部